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EDITOR'S NOTE 

With the exception of certain trigonometric and hyperbolic func
tions, Soviet niathematical symbols are the same a s  those encountered 
in the American literature. Fo r  the reader 's  convenience a l is t  of such 
exceptions and their American equivalents i s  given below. 

Soviet U s a g e  

Arch 
Arcth 
A r s h  
Arth 
arccos 
arcctg 
arcsin 
arctg 
ch 
cosec 
ctg
cth 
k 

rot  
sch 
s h  
ts 

th 

American equivalent 

cosh-' 
coth-' (ctnh-') 
sinh-' 
tanh-' 
cos-' (arc cos) 
cot-' (arc cot) 
sin-'  (arc sin) 
tan-' (arc tan) 
cosh 
csc 
cot (ctn) 
coth (ctnh) 
1og
curl  
sech 
s inh 
t a n 
tanh 
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FOREWORD 

This book has been written on the basis of lectures delivered by the author 
at Leningrad University during the past twenty years. 

Theoretical astrophysics has undergone significant changes over the years. 
First of all the scope of observational data, which theoretical astrophysicsmust 
interpret, has been extremely broadened. To an appreciable extent this is re
lated to the birth and rapid growth of radio astronomy and beyond-the-atmosphere 
astrophysics. On the other hand, in theoretical astrophysics itself s e v e r d  new, 
important concepts have emerged: the vast role of nuclear reactions in stellar 
energy and evolution, the large influence of electromagnetic forces on the state 
of stellar atmospheres and interstellar space, etc. At the same time, powerful 
new methods (in particular, in radiative transfer theory) have been developed in 
this science, and old methods have been refined for the purpose of utilizing the 
possibilities presented by computers. The content of the lectures, of course, 
h a s  var ied ,  following the changes in  theore t ica l  as t rophys ics .  During the 
wri t ing of th i s  book the au thor  once m o r e  c r i t i ca l ly  reviewed the l e c t u r e s  
of pas t  y e a r s  and reworked  them considerably,  keeping in mind the long-
t e r m  development of a s t rophys ic s .  

This book comprises eight chapters. The problems of the formation of the 
continuous and line spectra of stars are considered in the f i r s t  two chapters. 
The stellar layers, in which these spectra originate, are commonly called the 
"photosphere" and "atmosphere", respectively. Of course there is no sharp 
boundary between these layers; however, these are very convenient designations 
(if only because i t  is simpler to speak of the "theory of photospheres" than the 
"theory of the formation of the continuous spectra of stars"). In the chapters 
mentioned, the radiant energy absorption and emission processes, occurring 
in a volume element, are examined in detail, along with the processes of radi
ative energy transfer through the surface layers of a star.  Here  it is shown 
how the physical conditions in the surface layers of s ta rs  and their chemical 
compositions are determined from the observed stellar spectrum. 

Chapter I11 is specifically devoted to the solar atmosphere. Our proximity 
to the sun permits studying the details of i t s  disk, as well as the outer layers-
chromosphere and corona-of the solar atmosphere. The results of solar radio 
emission observations are used in discussing these layers. Chapter IV discusses 
planetary atmospheres which are luminous because of their scattering of sunlight. 
The theory of light scattering in planetary atmospheres is set  forth in this chap
ter, and their optical properties are determined. Atmospheric structure is dis
cussed in the less detai l  since one can expect great discoveries in this area very 
soon in conjunction with the development of astronautics. 

In Chapter V the physics of gaseous nebulae, being relatively simple and a 
very well developed portion of astrophysics, is discussed. Here ,  much space is 
allotted to the problems of atomic ionization and excitation, the formation of the 
emission spectra, etc. Results, obtained through a study of gaseous nebulae, 
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a re  then employed in discussing variable stars (in Chapter VI) and interstellar 
space (in Chapter VII). In these chapters the theory of nonthermal radiation of 
space objects is discussed along with the theory of their thermal radiation (in 
particular, in examining supernovae and cosmic radio emission outbursts). The 
book concludes with a chapter devoted to the theory of internal stellar structure. 

In writing this book, the author has not attempted to cover the problems 
in all aspects of theoretical astrophysics with equal thoroughness. To do other 
than this, the book, for a given size, would consist of sections distantly related 
to each other and it would be impossible to take them into consideration. The 
main problems, associated with the radiation fields of space objects and with 
the formation of their spectra in different frequency regions, a r e  discussed in 
this book. Other theoretical problems a r e  considered in less  detail. A theo
rectical astrophysics course of this nature should be considered perfectly reason
able since the study of the spectra of space objects constitutes the foundation of 
this science. 

Many problems, treated briefly in this book, a re  usually discussed in great
e r  detail in universities in other specialized courses (for example, in radio as
tronomy and cosmogony courses). The recently published book, "Course in Gen
eral  Astrophysics", by D. Ya. Martynov, can be recommended for a preliminary 
acquaintance with the various problems of theoretical astrophysics. 

The manuscript of this book was read by V.V. Ivanov and I.N. Minin, as
sociates in the astrophysics department of Leningrad University, who offered 
many valuable comments. S. A. Kaplan made several important suggestions di
rected toward improving the book. The author is sincerely grateful to them. 

V.V. Sobolev 
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CHAPTER I 

STELLAR PHOTOSPHERES 

The layer from which the continuous spectrum radiation comes to the ob- /9
server  is called the stellar photosphere. The stellar atmosphere, yielding a 
line spectrum, is located above the photosphere. There is, of course, no sharp 
boundary between the photosphere and atmosphere; but, nevertheless, spectral 
lines originate, on the average in higher layers than the continuous spectrum. 
The stellar interiors, inaccessible to observers, are below the photosphere. 
Later on we will see that for the overwhelming majority of s ta rs  the photosphere 
is relatively thin, i. e., the photosphere thickness is much less than the star ra
dius. 

The photosphere radiation determines the brightness of the s ta r  (this is the 
origin of the name "photosphere"-sphere of light). However, no energy is pro
duced in the photosphere itself. The energy sources lie a t  the deeper layers of 
the star, and energy is only transferred outward through the photosphere. 

It was established, even in the f i rs t  studies of photosphere theory, that en
ergy transfer in the photosphere is accomplished primarily by radiation. Energy 
transfer by thermal conduction plays no significant role because of the small
ness of the thermal conductivity coefficient of gases. Energy transfer by con
vection can be important only for  discrete points within the photosphere. 

The study of the transfer of radiant energy through the photosphere is the 
fundamental problem of photosphere theory. The solution of this problem is re
lated to a determination of the structure of the photosphere, i. e.,  to a determina
tion of the dependence of the density, temperature and other physical quantities 
on depth. 

One of the most important results of photosphere theory must be a deriva
tion of the energy distribution in the continuous stellar spectrum. By comparing 
the theoretical and observed energy distribution in a stellar spectrum one can 
test  the validity of the assumptions serving as the basis of photosphere theory. 

1. Radiation Equilibrium of the Stellar Photosphere / 10 
1. Radiation field. Since our immediate problem consists of analyzing 

the radiation field in the photosphere, we then must f i r s t  of all introduce the 
quantities that characterize the radiation field. 

*Numbers in  the margin indicate pagination in the foreign text. 
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The radiation intensity is the first of these quantities. This quantity is de
fined as follows. Let us  imagine an area element, perpendicular to the radiation 
direction, at a given point in space. If the s ize  of the area is dc, and the radia
tion in the frequency interval from v to v + dv is incident within the solid angle 
dw during time dt, then the amount of radiant energy dEv, striking the area, will 
be proportional to dodvdwdt, i. e. , it will be equal to 

The proportionality constant, entering into this equation, is called the radiation 
intensity. One can say that the radiation intensity is the amount of radiant en
ergy, within a unit interval of frequency, incident within a unit solid angle dur
ing unit time on a unit area, perpendicular to the radiation direction. Generally 
speaking, the radiation intensity depends on the coordinates of the given point, 
on the radiation direction and on the frequency v. If the radiation intensity is 
given, then the other quantities, characterizing the radiation f ie ld ,  can easily 
be determined. One of these is the radiation density p,, which is the amount 

of radiant energy within a unit interval of frequency per  unit volume. 

In order to express p 
V 

in terms of I
V 

let  us  proceed in the following man

ner. F i r s t  of all let us  assume that radiation of intensity Iv is normally incident 

on an area do in the frequency interval from v to v + dv during time dt within a 
small solid angle Aw. Then the amount of radiant energy, striking the area,  will  
be equal to I do d v  dt Aw. I t i s  obvious that this energy occupies avolume do cdt,

V 
where c is the velocity of light. Therefore the amount of radiant energy per 
unit volume will  be equal to Iv dv A d c .  On the other hand, by definition this 

quantity is equal to p dv. Consequently, in the case being considered 
V 

do 

pv=Iv-- .  

C 

In the general case, however, when the radiation is incident from all sides 
on the volume, the radiation density p

V 
is expressed by the equation 

(1 .3)  

where the integration is performed over the entire solid angle. 

It is also easy to express the radiation flux Hv,which represents the /I1 


amount of radiant energy passing in all directions through a unit area in a unit 
interval of frequency per unit time, in terms of the radiation intensity. In or
der to do this, let us f i r s t  consider the radiation passing through the area do in 
a direction including an angle 9 with i ts  outward normal (Fig. 1). In this case 
the area of the area element that is perpendicular to the radiation direction is 
equal to docos9. Therefore the amount of radiant energy, passing through the 
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area  d a  at an angle of 8 to the normal within the solid 
angle du during time dt in the frequency interval from 
u to u + du, will be equal to Iu da cos 4 du dt du. If 

we integrate this expression over all directions, then 
we  obtain a quantity which, by definition, is equal to 
Hu dp dtdu. Consequently, 

Hv =1I, c o ~6 do. (1.4) 

In a spherical coordinate system with the polar axis 
Figure 1. 	 directed along the outward normal to the surface da, 

the solid angle element is equal to dw= sin 4 d8 dq,
where cp is the azimuth of the radiation direction. 

Therefore the expression for the radiation flux can be rewritten in the form 

(1.5) 

Since cos 4 < 0 for 4 > T / Z ,  then it follows from Eq. (1.5) that the radia
tion flux H is the difference between two positive quantities:

V 

Hv = 8 v  - %'v', (1.6) 

where 

and 

The quantity 8 is the irradiance of the surface from one side, and the quantity
U 

8'-the irradiance of the surface from the other side. Thus, the radiationflux /12U 

through any surface is the difference in the irradiances of this surface. 

Let us mention an important property of the radiation intensity: in free 
space (i.e., when there is no absorption and emission of radiant energy in it) 
the radiation intensity does not change along the radiation direction. 

To demonstrate this property, let us imagine two area elements in the 
beam, situated perpendicular to the beam and separated from each other by a 
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distance s. Let dcr and da' be the areas of these surfaces, and dw and dwl-the 
solid angles which each surface subtends at the other. Considering the radiant 
energy, passing through both surfaces, we can write: I da dw =I' do' du', where v v 

I and I' are the radiation intensity incident on one and the other surface, respecv v 2 2tively. But dw = s do' and dw' = s do. Therefore we have I = I' , as was stated.v v 


From what has been said it follows, in particular, that the solar radiation 
intensity a t  the distance from Sun to Earth is the same as when i t  left the Sun. 
It is obvious, however, that the radiation density and flux decrease with distance 
from the Sun. 

2. Radiative transfer equation. It has already been stated above that in-_ ..- _ _  
free space the radiation intensity does not change along the path of the radiation. 
Now let us  assume that the space is filled by a medium capable of absorbing and 
emitting radiative energy. In such a case the radiation intensity will change 
along the radiation path, and we will now derive an equation describing this 
change. Beforehand, however, let us  introduce into the consideration quantities 
characterizing the absorptivity and emissivity of the medium. 

Let a radiation intensity I within a solid angle dw in the frequency interval 
V 

from v to v + dv be incident on a surface do, perpendicular to the radiation di
rection, within the time dt. The amount of energy, striking the surface, will 
be equal to Iv do  dwdv dt. If the medium is able to absorb the radiation, then 

along the path length ds some fraction, proportional to ds,  of this amount of 
energy will be absorbed. We will designate this fraction 01 

V
ds. Thus, the amount 

of absorbed energy along the path length ds will be equal to 

av ds Iv do do dv dt. (1.9) 

The quantity CY is called the absorption coefficient. Since the absorbed 
V 

energy fraction 01 d s  is a dimensionless quantity, then the absorption coefficient 
V 

01 has the dimensions of reciprocal length. Let us mention that the absorption
V 

coefficient depends on the frequency of the radiation and on the coordinates of 
the given point, but is independent of the radiation direction (in an isotropic 
medium). 

If the medium is also able to emit energy, then the amount of energy, /13
emitted by a volume dV within a solid angle dw in the frequency interval from 
v to v + d v  in a time dt, will be proportional to dVdw dvdt. We will designate 
this energy quantity by 

Eva17  do dv dt (1.10) 

and will call the quantity E 
V 

the emission coefficient. Consequently, the emis

sion coefficient is the amount of energy emitted by a unit volume into unit solid 
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angle within unit frequency interval in unit time. The emission coefficient de
pends on the frequency v, on the coordinates of the given point and, in general, 
on the direction of emission. 

Considering the quantities (Y
V 

and E
V 

to be given, let us determine how the 

radiation intensity changes along the radiation path. We will  assume that the 
radiation field is stationary, i. e. , it does not change with time. 

Let us imagine a cylinder element whose axis is directed along the given 
radiation path. Let the area of the base of the cylinder be equal to day  and the 
altitude-ds (the altitude is small compared with the linear dimensions of the 
base). Let us  examine the radiation entering the cylinder and leaving it within 
the solid angle doin  the frequency interval from v to v -I-d v  during the time dt. 
If the intensity of the radiation, entering the cylinder, is I

V' 
then the amount of 

energy entering the cylinder will be equal to 

I ,  do d o  dv at. 

We will designate the intensity of the radiation leaving the cylinder by I 
V 

+ dIv'Then the amount of energy leaving the cylinder will he equal to 

( I ,  + dI,)da d o  dv dt. 

The difference between these energy quantities ar ises  both because of en
ergy absorption in the cylinder and because of energy emission by the cylinder. 
The amount of energy absorbed in the cylinder is determined by Eq. (1.9). In
sofar as the energy emitted by the cylinder is concerned, it will be given in Eq. 
(1.10) if in i t  we se t  dV = duds. Thus, we obtain 

( I ,  + dIv )do  d o  dv d t  
= I ,  do do  dv dt -avds I, do do dv dt + E,. do ds do dv dt,  

or, after the necessary cancellations, 

dZV - -avZv 4- c*. (1.11)ds 

This is the desired equation, defining the variation of the intensity of the radia- /14
tion as  i t  passes through an absorbing and emitting medium. It is called the ra
diative transfer equation. 

In the special case when absorption of radiant energy occurs in the medium, 
but not emission (i.e. , Q

V 
# 0, and E~ = 0), instead of Eq. (1.11)we have 

(1.12) 
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Integration of this equation yields 

I,(s) =1,(0)e 

where I
V

(0) is the radiation intensity for s 
radiation entering the medium). 

The dimensionless quantity 

8 

0 * (1.13) 

= 0 (for example, the intensity of the 

is called the optical distance between two points. The radiation intensity is re
duced by a factor of e when i t  passes through a m i t  optical distance. 

In the general case (i. e., when a
V 

# 0 and E 
V 

# 0), by solving Eq. (1.11) 
with respect to I

V' 
we obtain 

a 8 

The relation (1.14) can be called the radiative transfer equation in integral form. 

We see that in the general case the radiation intensity consists of two parts. 
The first part  represents the intensity of the original radiation (at the points = O ) ,  
reduced because of absorption along the path from 0 to s. The second part  is the 
radiation intensity produced by the emission of radiant energy along the pathfrom 
0 to s and by its corresponding attenuation because of absorption along the path 
from the point of emission s' to the point being considered s. 

3. Radiation equilibrium equation. The radiation transfer Eq. (1.11)de
rived above enables one to find the radiation intensity I

V 
if  the emission coef

ficient E 
V 

and absorption coefficient 01 
1, 

are known. Usually, however, in radia

tion transfer problems the emission coefficient E 
V 

is not specified, and depends 
on the amount of radiant energy absorbed in the volume element, i. e . ,  on the 
quantities a

V 
and I

V' 
In order to determine this dependence, i t  is necessary to 

examine the energy processes occurring in a volume element of the given med
ium. 

These processes are specified for each problem. We will now consider 
the energy processes occurring in a volume element of a stellar photosphere. 

-/15 
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As already stated in the introduction to this chapter, there are no energy 
sources in the photosphere and the energy produced within the star is transfer
red radiatively through the photosphere. Therefore the radiation of each vol
ume element of the photosphere occurs because of the radiant energy absorbed 
in it. Assuming the photosphere to be stationary, we can say that each volume 
element of the photosphere emits as much energy as it absorbs. This condition 
of the photosphere is termed the radiation equilibrium condition. 

Of course, only the photospheres of those s ta rs  which do not undergo rap
id changes with time are in the state of radiation equilibrium. As is known, they 
constitute the vast majority of the stars. It is these stars that will  be the sub
ject of this chapter. Stars with rapidly changing brightness and spectrum (for
examples, novae) will be discussed later (see Chapter VI). 

We will give a mathematical formulation of the radiation equilibrium con
dition. For  this we will  determine the amount of radiant energy absorbed by a 
volume element and the amount of energy emitted by this element. 

Let us  imagine a volume element with a hase area d a  and altitude dr.  Let 
radiation of intensity I be incident on this vo*.umewithin a solid angle dw in a 

U 
direction forming an angle 4with the normal to the base. The amount of energy, 
striking the volume in the frequency interval from u to u + du during time dt, 
wil l  be equal to I u  dacos8  dwdudt. Since the length of the path, traversed by 

the radiation in the volume, is equal to d r  sec9,  then a fraction o! d r  sec4,  of 
U 


the total amount of energy striking the volume will be absorbed. Consequently, 
the amount of absorbed energy will be equal to 

dcr dr d t h l ,  dv do. 

In order to determine the total amount of energy absorbed by tne volume, it is 
necessary to integrate this expression over all frequencies and over all direc
tions. A s  a result, we find that the total amount of energy absorbed by the vol
ume is given by the expression 

(1.15) 

On the basis of (1.10) the amount of energy, radiated by the volume dudr  
within the solid angle dw in the frequency interval from u to u + dv during time 
dt, will be equal to 

f4 da dr d o  dv dt. 

Since the energy in the continuous spectriim is emitted by the volume element 
with the same probability in all directions, then for the total amount of energy, 
emitted by this volume, we obtain the expression 

00 

4n da dra t  5 e-#dv. (1.16) 
0 
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Equating Eqs. (1.15) and (1.16), we find 

(1.17) 
0 0 

Equation (1.17) is called the radiation equilibrium equation. 

The radiation transfer Eq. (1.11)and the radiation equilibrium Eq. (1.17) 
are among the fundamental equations of stellar photosphere theory. 

4. Geometrical model of photosphere. Equation (1.11)is the completely__-
general form of the radiation transfer equation. In specific cases the form of the 
radiation transfer equation is determined by the coordinate system adopted, and 
also on what arguments the radiation intensity depends. 

We can assume that a s ta r  has spherical symmetry. In this case the radia
tion intensity I depends on two arguments: the distance r from the center of the 

V 
s ta r  and the angle 9 between the radiation direction and the radius vector. In the 
given case we have 

and 

dr-=cos 0,
ds 

Therefore the radiation transfer equation 
photosphere assumes the form 

(1.18) 

dt?_-- sin 6 (1.19)
ds r 

in the case of a spherically symmetric 

(1.20)  

In the case being considered, the radiation equilibrium Eq. (1.17) can be 
replaced by another, simpler equation having the same physical meaning. After /17
integrating Eq. (1.20) over all frequencies and over all directions, we obtain 

(1.21) 

From (1.21) i t  is seen that if Eq. (1.17)  is satisfied, then the equation 

-(9 ”{ l l , d v )  =O.  
(1.22)

d 

dr 0 
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must also be satisfied. From (1.22) it follows that 

(1.23) 

where C is some constant, determined by the energy sources of the star. 

Thus, the total radiation flux (i.e., the radiation flux integrated over the 
entire spectrum) in a spherically symmetric photosphere is inversely propor
tional to the square of the distance from the center of the star.  Relation(l.23), 
just as Eq. (1.17), is the consequence of no energy sources or sinks in the photo
sphere. 

As already stated, nearly all s ta rs  have photospheres whose thickness is 
very small compared with the star radius. For  these s t a r s  Eqs. (1.20) and 
(1.23) can be greatly simplified. This simplification is not possible for  special 
types of stars (for example, Wolf-Rayet type stars). 

If the photosphere thickness is much less than the star radius, then the pho
tosphere layers can be considered to be plane-parallel rather than spherical (Fig. 

2). In this case the angle 8 does not change along the 
radiation path and instead of Eq. (1.20) we obtain 

cos Q -= -avZv +ev. (1.24)dIv
dr 

Since the distance r from the center of the star 
varies within very narrow limits in the photosphere, 
then instead of Eq. (1.22) we have 

m 

Figure 2. 1ri,dv =const. (1.25) 
0 

Thus, Eqs, (1 .24)  and (1.17)  o r  Eqs. (1.24) and (1.25) should be used when 
the radiation field in the photospheres of "conventional" stars is being considered. 

2. 	 Theory of Photospheres with a Frequency-Independent 
Absorption Constant

1. ~ - - -Basic equations. In photosphere theory the absorption coefficient was 
initially assumed to be independent of the frequency, leading to considerable 
simplification of the theory. Subsequently, however, it was established that this 
assumption is very crude. Nevertheless a photosphere theory with an absorption 
coefficient, indepsndent of frequency, continues to have value since i t  can be con
sidered as a first approximation to a more rigorous theory. 
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Assuming that the absorption coefficient does not depend on the frequency 
(i.e. , a

V 
= a), instead of the radiative transfer Eq. (1.24) and the radiationequi

librium Eq. (1.17) we obtain 

dIv
cos~---=---cJv+ev,dr 


Let us  introduce the quantities 

(2.3) 

The quantity I can be designated as the total radiation intensity, and the quantity 
&-as the total emission coefficient. 

Af te r  integrating Eq. (2.1)  over all frequencies, we find 

dI 
cos 6 -

dr 
=-d+ e, (2.4) 

and Eq. (2.2) is rewritten in the form 

(2.5) 

In a study of radiative transfer in any medium it is expedient to change /19 
over from geometrical distances to optical distances. In the given case i t  is 
convenient to introduce the optical depth T ,  defined by the formula 

ea 


T = $ adr .  (2.6) 
r 

Let us also set  

E. =as. (2.7) 

Then Eqs. (2.4) and (2.5) assume the form 

dI 
cos 6-= I -s,

dt 

s+-
45r' i 
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Thus, we have derived two equations for determining the two unknowns 
I and S. 

In the system of Eqs. (2.8) the quantity I is a function of 7 and 8, and the 
quantity S is a function of T. Taking into account that dw = s in8  dp dcp and inte
grating with respect to cp over the limits from 0 to 2n, instead of (2.8) we obtain 

(2.9) 

It is still necessary to add a boundary condition to the system of Eqs. (2.9). 
It expresses the fact that there is no radiation incident on the s ta r  from the out
side, i. e.,  

Yz\ I(O,6)= 0 when 6 >  -
2 - (2.10) 

Moreover, to obtain a completely defined solution of the system of Eqs. 
(2.9) under the boundary condition (2.10) the total radiation flux in the photo
sphere, equal to 

H=- L (2.11) 
4nRz' 

must still be specified, where L is the luminosity of the s ta r  (i. e. , the total 
amount of energy emitted by the s ta r  in 1second) and R is the s ta r  radius. 

Systems of equations such as (2.9) are encountered very often in astro
physics. These same equations occur in geophysics (in the study of light scat
tering in the earth 's  atmosphere and in water tanks). Certain physics problems /20
(for example, the problem of neutron diffusion) also lead to similar equations. 
Therefore systems of equations such as (2.9) have been the subject of numerous 
studies and several methods have been proposed for their solution. Some of 
these methods, which are of greatest interest for astrophysics, are described 
below. 

2. AJproximate solution of the equations. Approximate methods, based 
on an averaging of the radiation intensity over directions, have been proposed 
for solving the system of Eqs. (2.9). The f i rs t  of these methods is that of Sch
warzschild [l]and Schuster [2], the second-that of Eddington 131. We will now 
solve the system of Eqs, (2.9) by means of each of these methods. 

Schwarzschild-Schuster method. Let us  represent the average intensity~~~ 

of the upward radiation by 11(7), and the average intensity of the downward 

radiation-by 12(7). These quantities are equal to 

% 

(2.12) 
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Multiplying the f i r s t  of Eqs. (2.9) by s i n 8  dp and integrating over the lim
its from 0 to d 2 ,  we obtain 

e 


55 I (= ,6)cos 6 sin 6a6 =1,(t.)-sw. (2.13) 

0 

The integral on the left side of this equation will be approximated in the form 

% 

2 
1 (2.14) 

I(T, 6)cos 6 sin6a6 =-&(T),2 

0 

i. e. ~ let us take the average value of cos4  in the upper hemisphere, equal to 1/2, 
outside the integral sign. Then instead of (2.13) we will have 

i dZl(7) 
=Ii(t.)--s(r). (2.15)

2 dz 

Similarly, multiplying the f i r s t  of Eqs. (2.9) by s i n 4  dp and integrating ov
er the limits from ~ / 2to T,  we find 

(2.16) 

With the aid of the quantities 11(7) and 12(7)the second of Eqs. (2.9) is re
written thus: 

Thus, we have proceeded from the set of Eqs. (2.9) to the set (2.15)-(2.17), 
which is very simply solved. 

Adding Eqs. (2.15) and (2.16) term by term and making use of (2.17), we 
find 

11(t) -12( t . )  =F, (2.18) 

where F is an arbitrary constant. Substracting (2.16) from (2.15) and taking 
(2.18) into account, we obtain 

I , ( r )  + Z 2 ( t )  = 2FT+ c, (2.19) 

where C is a new constant. 
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To determine the constants F and C let us first of all turn to the boundary 
condition (2.10). In the given case it means that 12(0) = 0. Determining the val

ue of 12(0) from (2.18) and (2.19) and making use of this condition, we have 

C=F. (2.20) 

Insofar as the constant F is concerned, it is expressed in terms of the tot
al radiation flux H, which is constant in the photosphere and is given by Eq. (2.11). 
By definition, the total radiation flux is equa to 

(2.21) 

In the approximation assumed 

Comparing (2.22) with (2.18), we obtain /22 
H = Srp. (2.23) 

Substitution of (2.19) and (2.20) into (2. 17)  yields one of the des i r ed  func
tions : 

(2.24) 

The other desired function I ( T , ~ )is easily expressed in terms of S ( T )  with the 
help of the f i r s t  of Eqs. (2.9). 

Eddington method. We will multiply the f i r s t  of Eqs. (2.9) by 2rcos8  s in8  
d8 and integrate from 0 to Using Eq. (2.21), we obtain 

(2.25 

Let us  take the average value of cos24 over a sphere, equal to 1/3, outside 
the integral, i. e. , let us make the approximation 

i 3  



n 

Then, when the second of Eqs. (2 .9 )  is taken into consideration, we find 

(2 .27)  

instead of (2.25).  

Since the total radiation flux is constant in the photosphere, then from 
(2.27) i t  follows that 

(2 .28)  

where C is an arbitrary constant. 

To determine C let us write the expression for the quantities S(T)and H 
for -r = 0. Taking the boundary condition (2 .10)  into account, we find 

-
2 

s (0) =-
1 $ I (0 ,  e)sin 6 df), (2 .29 )  
2 '  

and also approximately /23 

(2 .30 )  

Therefore we have 

E
S ( 0 )=z. (2 .31)  

In light of the condition (2.31),  for the constant C we obtain 

c=-. 	E (2 .32 )
2n 

Substitution of (2 .32)  into (2 .28 )  gives 

(2 .33 )  

where, just  as before, the relationship (2 .23)  is used, 
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We see that Eq. (2.33) for the function S ( T )  is not very different from Eq. 
(2.24), derived by the previous method. 

3. Application of quadrature formulas. The approximation methods dis
cussed above have found rather wide application in astrophysics. However, ac
curacy of the results, obtained by these methods, is comparatively poor. Re
cently, therefore, another approximation method, based on the replacement of 
the integral term of the radiant equilibrium equation by the Gaussian sum for 
numerical quadratures, has come into widespread use. The radiative transfer 
equation in this case is written for those values of cos9  which are interval div
ision points in the quadrature formula. This permits one to reduce the problem 
to a system of linear differential equations with constant coefficients. 

The advantage of this method is the fact that one can improve the accuracy
of the results by increasing the number of terms of the quadrature formula. Ev
en with a small number of terms in this formula, however, satisfactory results 
are obtained because of the high accuracy of the integral replacement by the 
Gaussian sum. 

This method has been worked out in detail by Chandrasekhar 141. Let us 
now apply this method to the solution of the system of Eqs. (2.9). 

Let us begin by rewriting this system in the form of one equation: 

(2.34) 

where p = cos&. 

Let us represent the integral term of Eq. (2.34) in the form of a summa- /24
tion in accordance with the Gaussian quadrature formula: 

(2.35) 

H e r e  p-n’ * 0 Y I-c-l’ ply ---, pn are the roots of the Legendre polynomial P2n(p) 
and a. 

J 
are some weighting factors (a

-j  
= aj). The larger n, the more accurate 

the representation (2.35). 

In the n-th approximation Eq. (2.34) is replaced by a system of linear dif
ferential equations of order  2n: 

(2.36) 

where, for brevity, I(T,pi) is written as I.. 
1 
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The arbitrary constants, entering into the general solution of this system, 
are determined from the following conditions: 1) no external radiation is inci
dent on the photosphere, i.e., I-i = 0 for T = 0 (i = 1,2, .  .., n), 2)  there can 

be no terms increasing exponentially with T,  3) the radiation flux is given by 
H = nF. 

After the determination of the quantities Ii from Eqs. (2.36), the desired 

fundamental function S ( T )  is defined by the formula 

(2.37) 

By way of an example, let us  find the function S(T)  in the f i r s t  approxima
tion. In the given case p1 = -1-1 

-1
, = l/&,al = -aml = 1. Therefore instead of 

(2.36) we obtain 

(2.38) 

The system of Eqs. (2.38) must be solved under the conditions that I-1 = O  when r = 0 and 

n 

(2.39) 

Determining I1 and I-1 from (2.38) under the stated conditions, for the /2  5 

desired function S ( T )  we obtain 

(2.40) 

A s  we will see later,  Eq. (2.40) for the function S ( T )  is more accurate 
than the Eqs. (2.24) and (2.33) derived previously. After increasing the num
ber  of terms in the quadrature formula (2.35), one can obtain still more ac
curate expressions for S(T).  

4. Milne's integral equation. From the system of Eqs. (2.9) one can de~~ ~ 

rive one integral equation for determining the function S ( T ) .  To do this it is 
necessary to solve the f i rs t  of Eqs. (2.9) in terms of I(7;Q)and to substitute the 
resulting expression for I(% e) as a function of S(T) into the second of these equa
tions. This method of solving the problem is  the most reasonable since we ob
tain one equation for determining the function, depending on only one argument. 

16 




The general solution of the first of Eqs. (2.9) has the form 

It is the radiative transfer equation in integral form (compare with Eq. (1.14). 

Equation (2.41) must be examined separately for two cases: for upward 
radiation and for downward radiation. 

In the first case, assuming T* = 00 and that the radiation intensity does not 
increase exponentially with an  increase in r ,  we obtain 

(2.42) 

In the second case, assuming r* = 0 and keeping in mind the boundary con
dition (2. l o ) ,  we find 

Now we must substitute Eqs. (2.42) and (2.43) into the second of Eqs. (2.9). 
Making this substitution and changing the order of integration, we have /26 

Y 

a 
i ”s(T) =- 5s ( x r )  dr’ c+r*-l)  w sec 3 sin od e  
2 x  0 

(2.44) 

Let us set secb = x in the f i r s t  integral and -sec8 = x in the second. Re
alizing that sec8 s in8  dp = dx/x, instead of the foregoing equation we obtain 

Since the exponent in both exponential t e rms  can be represented in the form 
- I T - T’ I x, then (2.45) can be abbreviated thus: 

(2.46) 
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The kernel of the integral function (2.46) is an  integral exponentialfunction, 
defined by the equality 

(2.47) 

Let us note that the function Ei7 has a logarithmic character when T = 0, and as 
r --it approaches zero as e -7/I-. 

With the aid of (2.47) the integral equation for  determining S ( T )  is finally 
written in the form 

(2.48) 

This integral equation is called Milne's equation [5]. 

Equation (2.48) defines the function S ( T )  with an accuracy to within an ar
bitrary factor, which is determined from the condition that the radiation flux is 
given by H = TF. 

We will express the radiation flux in terms of the function S ( T ) .  To do this 
it is necessary to substitute Eqs. (2.41) and (2.42) into Eq. (2.21). Carrying 
out the same transformationas in the derivation of Eq. (2.48), we find /27 

W '% 

I:=2 $ S(z')Ez(d - T)&' -2 1S(t') Ez(r -~ ' ) d r ' ,  (2.49) 
'% 0 

where E27 is the second of the integral exponential functions, defined by the 

equation 

(2.50) 

The function Ei7 introduced above is often written as E17. 

Milne's integral equation has been discussed by many authors. The most 
thorough analysis is that of Hopf [6j, xho has determined that the exact solution 
of this equation has the form 

(2.51) 
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where q ( T )  is a function that varies monotonically within narrow limits between 

1 
q (0) =T=0.58 and q (m) =0.71.

13 

It is interesting to compare the approximate expressions for S(T),derived 
above with the Schwarzschild-Schuster, Eddington and Chandrasekhar (in the 
first approximation) methods, with the precise formula (2 .51) .  These approx
imate expressions yield the formulas (2 .24) ,  (2 .33)  and (2 .40)  respectively. We 
see that Eq. (2 .40)  is the most accurate. The values of the function S(T) ,  deter
mined with this formula for T = 0 and for large T ,  namely 

13
S ( 0 )=--F (2 .52)
4

and 

(2 .53 )  

are identical to the exact values of S ( T ) .  Formula (2 .33 )  gives precise values 
of the function S ( T )  only for T >>1. The values of S(7),  obtained from Eq. (2.24), 
di f fe r  from the exact values both for T = 0 and for T >> 1. 

5. Brightness distribution over the stellar disk. Knowing the function 
S(T)  makes i t  possible to determine the radiation intensity a t  any optical depth. 
In particular, we can find the intensity of the radiation emanating from the s tar ,  /28-
i. e., the quantity I(0, 4). It is obvious that the intensity of the radiation, emanating 
from the photosphere a t  an angle 4 to the normal, is the brightness of the stellar 
disk a t  an angular distance 8 from the center of the disk (Fig. 3) .  Therefore 
the stellar disk is given by the quantity I(0, 4). 

In order to find the quantity I(0, 4),i t  is necessary to set  7 = 0 in Eq. 
(2 .42) ,  giving the upward radiation intensity (i.e. , for 4 < 7r/2), Doing this and 

replacing the integration variable T' by T ,  we find 

(2 .54 )  

Various approximate formulas have been de
r(o*g) rived above for the function s ( ~ ) .Let us  see to what 

distribution of brightness over the stellar disk each(3939 of these formulas leads. 
Figure 3. 

Using formulas (2 .24) ,  (2 .33)  and (2 .40) ,  de
rived in the Schwarzschild-Schus ter  and Eddington 
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approximations and in the first Chandrasekhar approximation respectively, for 
the function S(T),we find 

(2 .55 )  

(2.56) 

and 

I(O,B)=P -+-cos6(7: 1. ( 2 . 5 7 )  

For the ratio of the brightness a t  the center of the disk to the brightness 
a t  the edge, i. e.,  for  the quantity I(0, O)/ I (O,  T ) ,  these formulas give 3, 2 .  5 
and 2.  7 ,  respectively. As  we will see below, the precise value of this quantity 
is equal to 2 . 9 ,  

Thus, the brightness a t  the center of the disk is considerably greater than 
the brightness a t  the edge. This is explained by the fact that at the center of the 
disk the radiation emanates, on the average, from deeper layers than a t  theedge. 

The theoretical expression presented above for the brightness distribution 
over the stellar disk is confirmed, in general, by observational data. These 
data are obtained primarily with solar radiation since we do not see the disks 
of other stars. An analysis of the luminosity variation curves of eclipsing var
iables also provides some information on the darkening of the stellar disk from 
the center to the edge. In this case one s ta r  periodically blocks the other and 
one can judge the brightness distribution over the disk from the radiation of the 
portion of the disk that remains uneclipsed, 

Let us emphasize that the topic of discussion in this section has been total 
brightnesses (i.e. , integrated over the entire spectrum). Observations, however, 
yield not only the distribution of the total brightness over the stellar disk, but 
also the brightness distribution a t  various wavelengths. The question of the rule 
for the darkening of the stellar disk from center to edge a t  various wavelengths 
will be considered below. 

3. Exact Solution of the Basic Equayo-ns 

1. Equation for  the resolvent, Milne's integral equation, presented above, 
represents a special case of equations that are frequently encountered in astro
physics. All these equations have a kernel which depends on the absolute value 
of the difference of two arguments. A relatively simple method, which we will  
now discuss, has been proposed for  solving such equations (see [7]). Then this 
method will be used to obtain an exact solution of the problem of radiation trans
fer through the stellar photosphere, Later, other astrophysical problems 
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(concerning the formation of absorption lines in stellar spectra, light scattering 
in planetary atmospheres, etc. ) will be solved by the same method, 

Let us examine the integral equation 

defining the function S(7) (not identical, generally speaking, with the previously 
introduced function S(T), but having an analogous physical meaning). Here  
K( IT - 7'1) is the kernel of the equation and g(T) is a function characterizing the 
distribution of radiation sources in the medium. The functions K(T) and g(T)are 
specified differently for  different problems (we will become acquainted with ex
amples later) ,  

The solution of Eq. (3.  I) can be represented in the form 

( 3 . 2 )  

where r(7,7')  is the resolvent, satisfying, as is known, the equation 
~/3 0 

Here, r ( T ,  T I )  is a symmetrical function of T and T ' ,  i .  e. , I?@, 7') = I?(T', T ) ,  

By using Eq. ( 3 . 3 ) ,  we can derive a new equation for  the resolvent. To 
do this let  us rewrite (3 .3 )  in the form 

Differentiating ( 3 . 4 )  first with respect to T, then with respect to T' and adding 
the resulting equations term by term, we find 

War ar ara r  + -=K (*) r (0,T1)+ 5 K ( I T -TNI) ( -4- -) w. ( 3 . 5 )6% ai ar a< 
0 

On the other hand, from Eq. (3 .3 )  we have 

( 3 . 6 )  

2 1  
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A comparison of (3 .5)  and (3 .6)  yields 

ar ar 
--t -=O ( T ) Q ) ( < ) ,  (3 .7)& a i  

where 

r (0, .>=0(TI. ( 3 .8 )  

From (3. 7) i t  follows (for T I  > T) that 

r 

r ( T ,  T I )  =uqr’-7 )  + 5 aqa)cqa+ = t  --pa. ( 3 . 9 )  
0 

Thus, the resolvent r(7,T I )  is expressed in terms of the function @(T), depend
ing only on one argument. 

The equation 

s 


O ( T ) = = E ; ( T ) + ~  K( l z - - t ’ I )@( .r ’ )dT/ ,  (3 .10)  
0 

which is Eq. (3 .6 )  with (3 .8 )  taker, into consideration, can be used for  determin- /31

ing the function @(T). Another equation for determining @(T) will be derived be

low. 


2. Auxiliary equations. The solution of Eq. (3 .1 )  for  any function g(7) is 
expressed in terms of the function +(T). Therefore the function @(T) must play 
a fundamental role in the theory of the equations under consideration. For  the 
purpose of determining this function we will now derive some auxiliary equations. 
Moreover, as we shall see later, these equations are of interest in themselves. 

Let us consider the equation 

(3 .11)  

which is a special case of Eq. (3.1). On the basis of Eq. (3 .2 )  we have 

m 

S(.t,z) =e-= +5 I’(z’,~)e-&dd. (3 .12)
0 

-XT’Multiplying (3 .7)  by e , integrating with respect to T’  over the limits 
from 0 to 00 and taking (3 .12)  into consideration, we obtain 

(3 .13)  
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But from (3 .12)  it follows that 

(3 .14)  

Therefore we find 

(3 .15)  

Integration of Eq. (3 .15)  gives 

In most radiative transfer problems the kernel of the integral equation 
(3 .1 )  is represented in the form 

(3 .17)  

where A(y) is an arbitrary function, a and b are some numbers. In this case /32
relatively simple equations are obtained for determining the function S(0 ,  x). 
In turn, the desired function @ ( T )  is expressed in terms of the function S(0, x). 

If K ( T )  is given by Eq. (3 .17) ,  then from Eq. (3 .11)  i t  follows that 

(3 .18 )  

Multiplying (3 .15 )  by e-'', integrating with respect to T over the limits from 
0 to 03 and bearing in mind (3 .14) ,  we find 

(3 .19)  

Substitution of (3 .19)  into (3 .18 )  yields 

(3 .20)  

We have derived a nonlinear integral equation foi. determining S ( 0 ,  x), which 
can be readily solved numerically. 
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From Eq. (3,20) one can also derive a linear integral equation for deter
mining S(0, x). Multiplying (3 .20)  by A(x)/(x-z) and integrating with respect to 
x over the limits from a to by we find, after some manipulations, 

(3 .21)  

The solution of this equation can be derived in explicit form. 

3. Determination pf.the function G(T). Comparing Eqs. (3.10) and (3.11) 
with each other, we see that the free  term of Eq. (3 .10 )  is a superposition of 
the free terms of Eq. (3.11). Therefore we have 

b 

a(.)=$ A ( Z > S ( T , Z ) d z .  ( 3 .22 )  
a 

Multiplying ( 3 . 1 6 )  by A(x) and integrating with respect to x over the limits from 
a to by  we find /33 

(3 .23 )  

where 

(3 .24 )  

Equation (3 .23)  is the desired equation for defining the function @(r).Ap
plying the Laplace transformation to it, we obtain 

(3 .25 )  

Thus, the determination of the resolvent of Eq. (3. 1) reduces to finding 
the function S(0, x) from Eq. (3 .20)  [or (3 .21)]  and to the subsequent determina
tion of the function @(T) from (3 .25)  by means of the inverse Laplace transfor
mation. The latter operation is easily done by the contour integration method 
through the utilization of the relation (3 .21 ) .  

If the function @(T)  is known, then with the aid of Eqs. ( 3 . 2 )  and ( 3 . 9 )  the 
function S ( r )  can be found for any radiation sources. In some cases the function 
S(T) is very simply expressed in terms of +(T). The case when the radiation 
sources are exponentially distributed in the medium can serve as an example. 

As already shown above, when g(r) = e-xr, the function S ( r ) ,  which we have des
ignated by S(T,x), is given by Eq. (3. 16). 
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An especially simple expression for the function S ( T )  is obtained for a uni
form distribution of radiation sources in the medium, i. e. ,  for g(7) = 1. As
suming x = 0 in Eq. (3 .16) ,  we find 

S ( T ,  0) =S(0,O) [1+	j a)(T ' )d f ] .  (3 .26 )  
0 

The quantity S(0, 0) entering into Eq. (3.261, is directly expressed in terms 
of the function A(x). Let us  se t  x = 0 in (3 .20)  and z = 0 in (3 .21) .  Then from 
the resulting equations i t  follows that 

(3 .27 )  

Simple formulas for the function S(T)can also be derived when g(7) = T ~ ,  /34
where n is a whole number. 

4. Solution-of the homogeneous equation. It has been shown above that the 
solution of the nonhomogeneous Eq. (3 .1 )  for any function g ( T )  is expressed in 
terms of the function qi(7). Now let us  show that the solution of the homogeneous 
equation 

( 3 . 2 8 )  

is expressed in terms of the same function @ ( T ) .  From the physical point ofview 
this equation corresponds to the case when the energy sources are located a t  an 
infinitely great depth. 

Assuming that a solution of Eq. (3 .28 )  exists, let  us  differentiate i t  with 
respect to T .  A s  a result we find 

(3 .29 )  

Comparing Eqs. (3 .29 )  and (3 .10 )  with each other, we see that 

S'(T) = k S ( r )  + S(O)O(.C), (3 .30)  

where k is some constant. From (3 .30)  i t  follows that 

(3.31) 
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To determine the constant k, let us consider Eq. (3 .28)  for T = 0. Taking 
(3.17) into consideration, we have 

b W 

S(O)=$ A(s)rLzS S(T)e-dT. (3 .32 )  
a 0 

Multiplying (3 .30)  by e-xT, integrating with respect to T over the limits from 0 
to 00 and taking (3 .14 )  into consideration, we find 

( 3 . 3 3 )  

Substitution of (3 .33)  into (3 .32)  yields 

(3 .34)  

or,  when (3 .21)  is taken into consideration, /35 

(3 .35)  

Thus, the solution of the homogeneous Eq. (3 .28 )  is expressed in terms 
of the function @(T) by Eq. (3.31),  in which the constant k is defined by Eq. (3.35). 

It should be noted that the various mathematical problems, associated with 
the analysis of the integral equations of radiative transfer theory (both homogen
eous as well as nonhomogeneous), are considered in detail in the book of Bus-
bridge [SI. There the solutions of some of these equations are given in explicit 
form, expressed in terms of the function @(T). 

5. Intensity of the emergent radiation. The auxiliary function @(T) is of 
interest not only because the resolvent of the integral Eq. (3 .1 )  is expressed in 
terms of it. No less significant is the fact that the intensity of radiation, emerg
ing from the medium, is in many cases directly expressed in terms of the same 
function. 

We will now examine some of these cases; however we will first derive an 
important general formula for the intensity of the radiation emanating from the 
medium. 

Let us consider the radiation emanating from a semi-infinite medium at 
an angle 8 to the normal. Denoting cos9 by p, we have 

(3 .36)  

26 




I 


for the intensity of this radiation. Here, S(T)  is understood to be the solution of 
the integral Eq. (3 .1 )  for any function g(T), i ,  e , ,  for any radiation sources. 

The function S ( T )  is expressed in terms of g(7) and of the resolvent r(7,7 ' )  

by means of Eq. ( 3 , 2 ) .  Substituting ( 3 , 2 )  into (3 .36) ,  we obtain 

From this, on the basis of (3 .12) ,  i t  follows that 

(3 .38)  

This is the desired formula for the radiation intensity. Thus, to deter
mine the function I(0, p) for any radiation sources i t  is sufficient to know only 
the function S(T, x), defined by Eq. (3 .11) .  

However, as already stated, in many special cases we need only knowthe 
function S(0, x) to determine the radiation intensity. Since, however, this func
tion is determined from Eq. (3 .20 )  or  (3 .  Zl),  then in these cases i t  is not re
quired that the function @(T)  be known to determine I(0, p). 

Let us consider the following special cases of radiation source distribu
tions : 

1. Let the function g(7) decrease exponentially with the optical depth, i.e., 

g ( r )  = e-mf. (3 .39 )  

In the given case, by using Eq. (3 .19 )  we find 

(3 .40 )  

2 .  Let us assume that the radiation sources are uniformly distributed in 
the medium, i. e. ,  g(T) = 1. In this case, assuming m = 0 in (3 .40) ,  we obtain 

(3 .41)  

Substitution of S(0, 0) from (3 .37)  into (3 .41)  yields 

1 & -'h .I (O,p)=S  (0,-)[1-2$ b A @ ) - ]  
P z 

(3 .42)  
0 
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3. Let us  assume that g(T) = T .  On the basis of Eq. (3.38) we have 

m i dr 
=5 +,-) 18 -. (3.43)I ( 0 ,Jl) t 8  

8 

We will use Eq. (3.15) to determine the integral of (3.43). Multiplying
the former by T and integrating with respect to T from 0 to m, we obtain 

a 0 V 

2 5  S{r,z)rdr= $ s ( T , z ) d T + S ( O , z ) ~o(T)Tdr. (3.44) 
0 8 e 

But from Eqs. (3.38) and (3.41) i t  follows that 

co 


2 s S(z,z)dz =s(o,o)S(o,z). (3.45)
8 

Therefore instead of (3.44) we find 

00 ODi 
z SS(r , i ; ) td~=S(0,z) [-S(G,O)+s c D ( + ) ~ d r ] .  (3.46) 

50 0 

To determine the integral on the right side of Eq. (3.46) we will multiply 
this relation by A(x)dx/x and integrate from a to b. Making use of Eq. (3.22) 
and Eq. (3.20), for x = 0 we obtain 

OD b & 
SO(r)rdr= S - ( O , O ) S  A(z)S{O,z)--g. (3.47) 
a a 

Replacing x in (3.46) by 1/p and substituting (3.47) into it, we finally find 

(3.48) 

Similarly, making use of Eq. (3.38) and (3.15), one can find the radiation 

intensity I(0, p )  in the case when g(7) = for any whole number n. 

4. Let us assume that the radiation sources are located a t  an infinitely 
great depth. In this case the function S(T) ,  defined by the homogeneous Eq. 
(3.28), is related to the function @ ( T )  by the expression (3.20). Multiplying this 

expression by and integrating with respect to T from 0 to W ,  we find 
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From this, with the use of Eq. (3.14),  i t  follows that 

(3 .50 )  

We see that in  all the cases considered the radiation intensity I(0, p)  is ex
pressed in terms of the function S(0, x) by very simple formulas. Later these 
formulas will be used repeatedly. 

6. Application~ _ _ _ _ _ _  /38to stellar photospheres. We will apply the method discus- 
sed above to the solu%on of the problem of radiative transfer through the stellar 
photosphere. As we know, under the assumption of the frequency-independence 
of the absorption coefficient this problem reduces to the Milne integral equation 

(3 .51 )  

We see that this equation is a special case of the homogeneous Eq. (3.28) 
for 

K (T)=	-1 
Ei T =-1"5 e-= 

dz-, (3 .52 )  
2 2, z 

i. e . ,  for A(x) = 1 / 2 ~ ,a = 1 and b = 00. 

The application of the method discussed must begin with the formulation 
of an equation for determining the function S ( 0 ,  x). To simplify the notation we 
will designate x by l / p  and S ( 0 ,  x) by q ( p ) .  Then Eq. (3 .20 )  for the given case 
assumes the form 

(3 .53 )  

Equation (3 .53 )  was f i r s t  derived by V. A. Ambartsumyan [ 91 by another 
method. Detailed tables of the function q ( p )  have been compiled by solving this 
equation numerically. This function increases monotonically from the value 
q(0)= 1 to the value cp( 1)= 2 . 9 .  An expression for q ( p )  has also been derived in 
explicit form*. 

*See Chapter IV for a more detailed discussion of equations of the type 
(3 .53) .  
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If the function q ( p )  is known, then the function +(T)  can be found. For its 
definition we have the equation 

(3 .54)  

resulting from (3 .25) .  Performing a Laplace transformation yields 

Equation (3 .55)  was derived by this means in I. N. Minin's paper [lo]. A /39
table of values of the function +(T) is given there. 

Knowing the function +(T)  allows one to 0btai.n the solution of the homogen
eous Eq. (3 .51)  as well as the solution of the corresponding nonhomogeneous 
equation. NOW, however, we are only interested in the solution of Eq. (3. 51). 
This solution is determined by Eq. (3 .31) .  

From Eq. (3 .35)  i t  follows that in the given case k = 0. Therefore we have 

(3 .56)  

The desired exact solution of Milne's integral equation is given by Eq. (3 .56) .  

We can also derive an exact relation for the brightness distribution over 
the stellar disk. The brightness at an angular distance of 8 from the center of 
the disk is given by Eq. (2 .53) .  Assuming cos8  = p  in it, we pass over to Eq. 
(3 .36) .  It has been shown above that the radiation intensity I(0, p) for  sources ' 
a t  infinity is determined by Eq. (3 .50) .  But in the given case k = 0 and S(0, l /p)= 
= cp(p). Therefore the brightness at an angular distance of arccos p from the 
center of the disk will be equal to 

I(0Y PI = S(O)Cp(P). (3 .57)  

For the ratio of the brightness a t  the center of the disk to the brightness 
a t  the edge we find the value cp( l ) /cp(O)  = 2 . 9 ,  already mentioned in previous sec
tion. 

The quantity S(0) entering into Eqs. (3 .56)  and (3 .57 )  can be expressed in 
terms of the radiation flux TF in the photosphere. We have 

(3 .58)  
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where the notation 

(3 .59)  

is used. 

The quantities an, representing the moments of the function ~ ( p ) ,can be 

found from Eq. (3 .53) .  Integrating this equation with respect to p over the lim
i ts  from 0 to 1, we obtain 

from which it follows that 

a0 = 2. 
2Multiplying (3 .53)  by p dp and integrating over the limits from 0 to 1, 

ilarly find 

2 
=I= 3-

Substitution of (3 .62)  into (3 .58)  yields 

4F =Y S ( 0 ) .
v"3 

/40 

(3 .60)  

(3 .61 )  

we sim

(3 .62 )  

(3 .63 )  

This formula, expressing the exact relationship between the quantities F and 
S(O), has already been presented in a previous section. 

Substituting (3 .63)  into (3 .56 ) ,  we find 

(3 .64 )  

A comparison of (3 .64)  with (2 .50)  yields 

(3 .65)  
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If we substitute Eq. (3.55) into (3 .65 ) ,  then we a r r ive  a t  the formula for  q(r)  
first derived in Mark's work by another method. 

4. Local Thermodynamic Equilibrium 

1. Radiation field in presence of thermodynamic equilibrium. As we will 
see later, formulas describingthe state of thermodynamic equilibrium are wide
ly used in photosphere theory. Therefore we should cite some of these equations. 
The problem of the radiation field in the presence of thermodynamic equilibrium 
is of special interest to us. 

Thermodynamic equilibrium, as is known, is established in a cavity whose 
walls are heated to some constant temperature T. The state of thermodynamic 
equilibrium is characterized by the fact that each process is in equilibrium with 
i t s  opposing process (this constitutes the "principle of detailed equilibrium"). 
From this, in particular, i t  follows that the radiation intensity in the presence 
of thermodynamic equilibrium is independent of position and direction. If this 
were not so, then there would be a transfer of energy from one point to another 

-in  certain directions. 

It is also obvious that the radiation intensity in the presence of thermody
namic equilibrium does not depend on the individual properties of the cavity. To 
clarify this i t  is sufficient to assume that there are two cavities with identical 
temperatures, but with different intensity values of radiation of frequency v. 
Then when these cavities are connected, there would be a transfer of energy 
from one cavity to the other, in violation of the second law of thermodynamics. 

Thus, the radiation intensity in the presence of thermodynamic equilibrium 
depends only on the frequency and temperature. We will denote this intensity by 
B p .  

We will apply the radiative transfer Eq. (1.11)to the case under consid
eration. Since dIJd s  = 0 in the given case, then from (1.11)i t  follows that 

Kirchhoff's law is expressed by Eq. (4.1): in the presence of thermodynamic 
equilibrium the ratio of the emission coefficient to the absorption coefficient 
is equal to the radiation intensity, being a universal function of frequency and 
temperature. 

An expression for the radiation intensity under thermodynamic equilibrium 
was  f i r s t  determined by Planck. Planck's formula has the form 

B"(T)=-2hva 
E 

4 
9 (4.2)E' 

ekT--i 

where h is Planck's constant and k is Boltzmann's constant. 

-/41 
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As already stated, the radiation intensity in the presence of thermodynamic 
equilibrium does not depend on direction, i. e., the radiation is isotropic. In 
this case, as follows from Eq. (1.3), the radiation density is equal to 

(4.3) 

Therefore in the presence of thermodynamic equilibrium we obtain /42 

(4.4) 

for the radiation intensity pV (T). 

The radiation flux in the presence of thermodynamic equilibrium is obvi
ously equal to zero. However, the radiation flux emanating through a small op
ening from the cavity mentioned differs from zero. To determine this flux it is 
necessary to utilize Eq. (l.4) and to bear in mind that the intensity of the ra
diation emanating from the cavity is independent of direction, and there is no 
radiation entering the cavity. A s  a result, for the radiation flux H (T)  in this 
case we obtain V 

Bv(T)  = ldiv(T).  (4.5) 

Let us mention that if  radiation enters the cavity through a small opening, 
then i t  is practically completely absorbed in it. One can say that in this case 
we are dealing with an absoluteiy black body. Therefore the quantity Bv(T) is 
often called the radiation intensity of an absolute black body. 

After integrating Eq. (4.4) over all frequencies, we obtain the total ra
diation density in the presence of thermodynamic equilibrium: 

or  

p ( T )  = aT4, (4.7) 

where 

(4.8) 

Equation (4.7) expresses the Stefan-Boltzmann law. The quantity a is Stefan's 
constant. 
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Integrating Eq. (4.2) over all frequencies, we find the total radiation in
tensity of an absolute black body 

From (4.5) and (4.9) it follows that the total radiation flux, emanating 
from an absolute black body, is equal to 

H ( T )  = or', (4.10) 

where /43 

ae 
a=---

4' (4.11) 

2. Assumption of local thermodynamic equilibrium of the s te l lar  photo
sphere. The radiation field in the photosphere-differs drastically from the ra
diation field in the presence of thermodynamic equilibrium. This has already 
been seen from the fact that the radiation intensity in the photosphere depends 
on the depth and on the direction. Therefore nothing can be said concerningthe 
presence of thermodynamic equilibrium in the photosphere on the whole. 

Even the conditions in a volume element of the photosphere are far re
moved from the conditions of thermodynamic equilibrium (if only because of the 
anisotropy of the radiation incident on the volume). However, the radiation ab
sorbed by the volume element is reprocessed to a considerable degree of it. As 
known from thermodynamics, this reprocessing is in the direction of establish
ing thermodynamic equilibrium. Therefore one can assume that a t  each point 
of the photosphere the emission coefficient E is related to the absorption coef-

V 
ficient CY by the same relation as in the presence of thermodynamic equilibrium

V 
with some temperature T characteristic of a given point. In this situation the 
temperature is determined from the condition that the total amount of energy, 
emitted by the volume element, is equal to the total amount of energy absorbed 
by this volume, i. e. , from the radiant equilibrium condition. 

This assumption is called the assumption of local thermodynamic equil
ibrium of the stellar photosphere. There is no doubt that it is satisfied with 
high accuracy in the deep layers of the photosphere. The question of to what 
extent this assumption is satisfied in the surface layers of stars is rather dif
ficult to analyze theoretically. Sonic conclusions on this question can be drawn 
by comparing theory with observations (see Section 6). 

The assumption of local thermodynamic equilibrium means that in the 
stellar photosphere the ratio of the emission coefficient to the absorption coef
ficient is given by Eqs. (4.1) and (4.2), i.e. , 

(4.12) 
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Equation (4.12) is one of a number of the fundamental relations of photosphere 
theory (together with the radiative transfer equation and the radiant equilibrium 
equation). 

The adoption of the assumption of local thermodynamic equilibrium great- L s  
ly simplifies photosphere theory. Without such an assumption the calculation 
of the radiation field in the photosphere for different frequencies would be ex
tremely difficult. 

Just  as before, we will  now assume that the absorption coefficient is fre
quency independent. In this case the dependence of the temperature on the op
tical thickness is obtained in explicit form and it is quite easy to calculate the 
radiation field in the photosphere for different frequencies. 

If the absorption coefficient does not depend on the frequency, then Eq. 
(4.12) assumes the form 

(4.13) 

Integrating (4.13) over all frequencies, we obtain 

(4.14) 

where (4.9) has been taken into consideration. Just  as in Section 2 ,  we will de
fine E = as. The quantity S was determined in the theory of radiant equilibrium 
as a function of the optical depth 7. Therefore we have: 

ac
S(r)=-TI. (4.15)

4% 

The relationship between temperature and optical depth is also given by this 
formula. 

If the quantity S(7)is found in the Eddington approximation, then it is de
fined by Eq. (2 .33) .  In this case we obtain 

(4.16) 

Af ter  taking for S ( T )  the exact expression given by Eq. (2.50), we find 

(4.17) 
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The quantity nF entering into Eqs. (4.16) and (4.17) is the total radiation 
flux in the photosphere. It is convenient to represent it as the total radiation 
flux of an absolute black body at some temperature Te, i. e., based on Eq. (4.10), 
to set 

XF - aTedS (4.18) 

where (T = ac/4. The temperature Te is called the effective stellar tempera- /45 
ture. It is related to the stellar luminosity L and stellar radius R by the ex
pres  sion 

L =4&ozre+* (4.19) 

Substitution of (4.18) into Eqs. (4.16) and (4.17) yields 

(4.20) 

(4.21) 

Assuming r = 0 in the formulas that have been derived, we can define the 
surface temperature T0' 

In the Eddington approximation we find 

(4.22) 

The exact relationship between To and Te is 

(4.23) 

After setting T = Te in these same formulas, we find the optical depth 

corresponding to the effective stellar temperature. It is found to be equal to 
r = 2/3 from Eq. (4.20) and r .= 0.64 from Eq. (4.21). 

3. Radiation coming from the photosphere. In order to determine the 
radiation field in the photosphere for different frequencies, we must make use 
of the radiation transfer equation 

dry
cos 6-dr = -aJV +ev. (4.24) 
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Assuming here 

-k =sr (4.25)cry 

and introducing the optical depth in the photosphere at frequency v 

(4.26) 

instead of (4.24) we obtain 

(4.27) 

Integrating Eq. (4.27), one can determine the radiation intensity a t  differ
ent optical depths. Of most interest to us  is the intensity of the radiation com
ing from the star, i. e . ,  the quantity IJ0,S). The quantity i s  equal to 

(4.28) 

Equation (4.28) is a simple consequence of the radiation transfer equation. 
Let us now make use of the assumption of local thermodynamic equilibrium, 
Comparing Eqs. (4.25) and (4.1) with each other, w e  see that with this assump
tion 

sv(Tv)  = B v ( T ) ,  (4 .29)  

where B (T) is the intensity of the radiation of an absolute black body, given by
V 

Eq. (4.2). Therefore in the case of local thermodynamic equilibrium, instead 
of (4.28) we obtain 

(4.30) 

or 


(4.31) 

Equation (4.31) gives the intensity of radiation of frequency v, emanating
from the star at an angle of 8 with respect to the radius vector. At  the same 
time i t  gives the brightness of the stellar disk at frequency v at an angular dis
tance of 8 from the center of the disk (see Section 2). 
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The quantity I (0,9)can be determined from observations of the Sun and 
V 

of eclipsing variables. From observations of other stars only a quantity, pro
portional to the radiation flux H from the stellar surface, is obtained. More

V 
precisely, these observations give the stellar illuminance, equal to 

Lv 
8 V  =-w' (4 .32 )  

where L 
V 

is the stellar luminosity at  the frequency v and r is the distance from /47 
the star to the observer. But 

Lv = 4nR2HV, (4 .33 )  

where R is the star radius. Therefore we have 

(4 .34)  

Thus, the radiation flux H characterizes the relative distribution of energy in 
the stellar spectrum. V 

The radiation flux HV is defined by the formula 

(4 .35)  

resulting from (1.5). Substituting Eq. (4.28) into (4 .35)  and changing the order 
of integration, we find 

(4 .36)  

where E T is the second integral exponential function [compare with Eq.2 v  
(2.48)l .  

With the assumption of local thermodynamic equilibrium in the photosphere, 
from (4 .36)  i t  follows that 

OD 

Bv= 2n s Bv(T)E21itdrv, (4 .37 )  
0 
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o r  

(4.38) 

Equations (4.31) end (4.38) are valid for any frequency dependence of the 
absorption coefficient. However, in order to make use of these formulas, it is 
necessary to know the relationship between the quantities T and T

V. 
Later we 

will  undertake to establish this relationship for  an arbitrary absorption coef
ficient 0 1 ~ .  Now, just as before, we will, however, assume that the absorption 
coefficient is independent of the frequency. In this case T~ = T ,  and the rela
tionship between T and T is given by Eq. (4.21) [or by the approximate Eq. (4.20)]. 

Instead of Eqs. (4.31) and (4.38), in the case cited we obtain 

(4.39) 

and 

(4.30) 

where Eq. (4.20) has been used. 

Calculations show that the energy distribution in the continuous spectrum 
of a s tar ,  given by Eq. (4.40), does not differ greatly from the Planckian dis
tribution a t  a temperature equal to the effective stellar temperature, i. e . ,  

(4.41) 

Only in the far ultraviolet portion of the spectrum is there an appreciable ex
cess of radiation compared with the Planckian case, with i t  increasing with 
an increase in the frequency v. 

However, the observed energy distribution in stellar spectra does not 
agree with the theoretical distribution given by Eq. (4.40). The discrepancies 
between observations and theory are different for stares of different spectral 
classes. For example, the discrepancies are not very large for the visible 
portion of the spectra of A and B class stars. It is explained by the fact that 
Eq. (4.40) has been written under the assumption that the absorption coeffi
cient is independent of the frequency. It is obvous that the effect of a frequency 
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dependence of the absorption coefficient on the energy distribution in the stellar 
spectrum must be significant. 

The question of the frequency dependence of the absorption coefficient and 
the effect of this dependence on the form of the stellar spectrum will be examin
ed in detail in the next two sections. Now, however, let  us attempt to determine 
some of the characteristics of the stellar photosphere, retaining the assumption 
of a frequency independent absorption coefficient. The results derived below can 
be used as a first approximation to real  photospheres if some average absorption 
coefficient is used (i.e., an absorption coefficient, averaged over all frequencies). 

4. Dependence of temperature-asd density on depth. The dependence of /49-
the temperature on the optical depth in the photosphere was determined earlier. 
In this, assumptions were made concerning radiative equilibrium and local ther
modynamic equilibrium. Now let us determine the dependence of the tempera
ture and density on the geometrical depth in the photosphere. For  this we must 
make one more assumption-concerning the mechanical equilbrium at the photo
sphere. It is obvious that there is no doubt about the validity of this assumption 
for the overwhelming majority of s t a r s  (except for Wolf-Rayet type stars, novae 
and s t a r s  similar to these, which we will not consider now). 

We will assume that each volume element in the photosphere is in equilib
rium under the influence of two forces: gravitational force and gas pressure 
force (we will disregard radiation pressure for the present). Equating these 
forces to each other, we obtain the equation of hydrostatic equilibrium 

dp  = -gpdr, (4 .42)  

where p is the pressure,  p is the density and g is the acceleration of gravity in 
the photosphere. 

It is obvious that the gas in the photosphere can be considered to be ideal. 
Therefore to Eq. (4.42) we will add the equation of state of an ideal gas: 

R' 
p = - P PT, (4.43) 

where ,u is the average molecular weight and R* is the gas constant. 

Assuming that p does not change in the photosphere, from (4.42) and (4.43) 
we find 

-Ii' d ( p T )=-gp dr. (4 .44)
P 

Let us also utilize the relationship, derived above, between the tempera
ture T and the optical depth T. An approximate relationship between these quan
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tities is given by Eq. (4.20), from which it follows that 

3dTL= --Ted adr. (4.45)
4 

Here, as already stated, a! can be understood to be the average absorption co
efficient. 

From the last two equations one can determine p and T in  the form of func
tions of r. But to do this it is necessary to specify the dependence of a! on p and 
T. Let us  set a! = x p  and initially we will assume x = const. Then from Eqs. 
(4.44) and (4.45) we obtain 

4 gp dT4d ( p T )=---
3 wR' Tea' (4.46) 

or, after integration 

(4.47) 

where T0 is the stellar surface temperature. 

4 4In the deep photosphere layers, where T >>To, the density is related to 
the temperature by the expression 

(4.48) 

Substituting (4.48) into (4.44), we arrive at the following formula for the tem
perature gradient: 

Equations (4.44) and (4.45) can easily be solved even for the more general 
assumptions concerning a. Let us  assume, for  example, that 

P2
U-- Ta ' (4.50) 

where s is some parameter (this formula for CY, as we shall see in Section 5, 
actually occurs). Then instead of (4.48) and (4.49) we obtain 

(4.51) 

4 1  
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and 

(4.52) 

Let us  apply the formulas derived above to the Sun's photosphere. Assum

ing in Eq. (4.49) g = 2.7. lo4 ,  ,u = 1, R* = 8.30 10
7 , we find: dT/dr deg/cm.

Consequently, the temperature increases by 10  degrees over a depth of 1kilome
te r  into the photosphere. 

From the formulas derived one can also determine the quantity Idr/d.rl, 
i. e.,  the geometrical thickness of a layer of unit optical thickness. Substitut- /51
ing Eq. (4.48) into the formula dT = -xpdr, we find 

(4.53) 

Here  if we set T = Te, then the quantity ldr/dTl will characterize the pho

tosphere thickness. In the case of the Sun, the photosphere thickness is of the 
order  of 100 km. Since the Sun's radius is equal to 700,000 km, then we verify 
that the photosphere thickness is much less than the radius. We have already 
used this result earlier in considering the photosphere layers to be plane-par
allel. 

5. Radiation pressure-in thexhotoqhere.  In the discussion of the me
chanical equilibrium of the photosphere we ignored the radiation pressure. We 
will now evaluate the role of radiation pressure in the photosphere, determining 
the ratio of radiation to gas pressure. To do this we will first derive general 
formulas defining the intensity of the radiation pressure. Later these formulas 
are necessary for application not only to the photosphere, but also to other ob
jects. 

As is known, each photon possesses a momentum equal to hu/c. If the 
photon is absorbed by an atom, then the atom acquires a momentum hv/c in the 
direction of motion of the photon. This gives rise to the radiation pressure on 
an atom. 

Let us  imagine a volume element with a base area do and thickness dr. 
We will assume that radiation strikes the volume from all sides, and we will 
find the intensity of the radiation pressure acting on the volume in a direction 
normal to the base. We will f i r s t  consider the radiation striking the volume 
at an angle 9 to the normal within a solid angle dw in the frequency interval 
from v to v + dv within a time interval dt. If the radiation intensity is I

U' 
then 

the amount of energy striking the volume will be equal to I docos9dodvdt.  
U 

However, not all of this energy produces a pressure on the volume, but only 
that fraction of i t  absorbed by the volume. Since the path length of the photons 
in the volume is equal to d r sec8 ,  the amount of energy absorbed by the volume 

42 




is equal to avIv d a  d r  d wdv dt. In order to determine the momentum acquired by 

the volume in  the direction normal to the base, it is necessary to mulitply this 
energy by cos&/c. Consequently, this momentum will be equal to 

COS 6 avIvdo dr do dv dt. 
C 

Integrating this expression over all frequencies ana over all directions, 
we obtain the total momentum acquired by the volume during time dt. It is equal /52
to 

o r  

1
-do dr dt 5 a,Hu dv. (4.54)
C 

Let us designate by 

frda dr dt (4.55) 

the impulse of the radiation pressure intensity acting on the volume dodr  during 
time dt. From a basic law of mechanics i t  follows that the last two expressions 
must be equal to each other. Therefore we obtain 

(4.56) 

The intensity of the radiation pressure,  acting on a unit volume, is given by
this formula. 

The force, acting on a volume element, can also be represented as the 
difference in the pressures  on the base of the volume. Denoting the radiation 
pressure by pr, we can write this force in the form 

-dp,da at. (4.57) 

Equating expressions (4.54) and (4.57), we find 

(4.58) 

We will apply the latter formula to the stellar photosphere. Assuming, 
as before, that the absorption coefficient does not depend on the frequency, 
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instead of (4.58) we obtain 

(4.59) 

or,  using (4.18), 

a 
dpr = 4T,Oa dr. (4.60) 

A comparison of (4.60) with (4.45) gives 

i 
pr =-

3
Q T ~ .  (4.61) 

Thus, in the case under consideration the same expression is obtained for the 
radiation pressure as in the presence of thermodynamic equilibrium. 

Above we assumed that the photosphere exists in equilibrium under the in
fluence of gravity and gas pressure,  and therefore in Eq. (4.42) p was under- /53
stood to be the gas pressure only. Let us now understand p to be the sum of 
the gas pressure pg and the radiation pressure pr' Then Eq. (4.42) is written 
in the form 

d ( p g  + p r )  = -gp dr. (4.62) 

Using Eqs. (4.62) and (4.45), as well as Eq. (4.43) for  the gas pressure 
and Eq. (4.61) for  the radiation pressure,  one can derive, as before, the tem
perature and density distribution in the photosphere. However, we will not do 
that, and we will find only the ratio of the radiation pressure pr to the total 

pressure p = p + pr. After dividing (4.59) by (4.62) and setting a =xp,we 
obtain g 

(4 .63)  

The total radiation flux H is constant in the photosphere. Let us  note that x = 
= const. In this case, integration yields 

(4.64) 

where p r is the radiation pressure on the stellar surface. Whence for  the deep 

photosphere layers i t  follows that 

(4.65) 
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For calculations with Eq. (4.65) it is necessary to know the quantity ‘ ~ t  
(i.e., the average absorption coefficient calculated per  unit mass). The for
mulas presented in  the following section can be used for  this. Calculations show 
that for stars like the Sun the quantity pJp is oi the order  of a few thousandths, 

and for  stars of later spectral classes of the main sequence it is still smaller. 
Consequently, for  these stars one can disregard radiation pressure in  compar
ison with the gas pressure. However, the role of radiation pressure increases 
with an increase in the effective stellar temperature, and for  hot supergiants 
the ratio of the radiation to gas pressure is about unity. 

-~ . .  --Absorption Coefficient5. Frequency Dependence. -of-.the - - . . 

- _1. Continuous emission and absorption spectra. Thus far we have not 
touched on the question of what physical processes are associated with energy 
emission and absorption in  a continuous spectrum. Passing now to an examina
tion of this question, let us consider the energy level diagram of an atom (Fig. 4). 

As  is known, each atom can exist in several stable states with certain dis- /54
Crete energy values: El, E2, .  .., Ei,. .. These energy values are negative 

(Ei < 0). In the corresponding states the outer 
electron is bound to the atom, or,  as is some-

AbsorptionEmiSSion 	 times said, it exists in an elliptical orbit. Dur
ing the transitions of an atom between these 
states, the emission and absorption of quanta in 
spectral lines occur. 

At the same time the atom can also exist 
in states with a positive energy (E > 0). In these 

E d  	 states the electron is not bound to the atom, i.e., 
it is in  a hyperbolic orbit. The positive energy 
levels of an atom are a continuum. 

The transition of an atom from a state with 
negative energy into a state with positive energy 

Figure 4. 	 (i.e., the transition of an electron from a bound 
to a free state) is called ionization of the atom. 
Ionization can occur due to the effect of radiation; 
in this case i t  is called photoionization. 

The absorption of a light quantum occurs during photoionization. In this 
situation the energy of the quantum is partially expended in detaching the elec
tron from the atom, and partially in imparting a kinetic energy to the liberated 
electron. In other words, in this case the relationship 
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exists, where = -E..
1 

The quantity )$ is the energy for atom ionization of the 

i-th state. The relation (5.1) was f i r s t  derived by Einstein during an investiga
tion of the photoelectric effect. 

During photoionization from the i-th level, any quantum whose energy is 
greater o r  equal to the ionization energy, i. e. , hv 2 )$, can be absorbed. Con

sequently, energy absorption in a continuous spectrum occurs during photoion
ization. 

The process that is the opposite of ionization, i. e. the capture of a free 
electron by an ionized atom, is called recombination. The emission of energy 
in a continuous spectrum occurs during recombination. Lf an electron with ve
locity v is captured in the i-th level; then a quantum of frequency v, determined /55
by the same relation (5. l), is emitted. 

Besides photoionization and recombination, transitions of atoms between 
states with positive energy, i. e. , electron transitions from free states to f ree  
states, also lead to the absorption and emission of energy in a continuous spec
trum. It is obvious that quanta of any frequency can be absorbed and emitted 
during such transitions. 

The probabilities of all these transitions are characterized by the corre
sponding absorption and emission coefficients. We will denote the absorption 
coefficient of quanta of frequency u, calculated for one atom in the i-th state, 
by kiu. Then the volume absorption coefficient of quanta of frequency v by 

atoms in the i-th state will be equal to a.
iv 

= niki v y  where ni is the number of 

atoms in the i-th state in a unit volume. And the volume absorption coefficient 
produced, by all photoionizations, will  be equal to 

where i0 is determined for each frequency from the condition that the inequality 

hv B is satisfied when i B i0' 

The volume absorption coefficient, caused by free-free transitions, will 
be denoted by a;. Obviously i t  is proportional to the number of free electrons 

and the number of ionized atoms in  a unit volume (since the free-free transi
tions occur in the field of an ion). 

The total volume absorption constant Q (appearing in the previous sec-
Ution) is the sum: 

av = ay' +-a". (5.3) 
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We see that the absorption coefficient CY is inherently dependent on the 
V 

state distribution of the atoms. As already stated, in photosphere theory the as
sumption of local thermodynamic equilibrium is made. Therefore �et us imag
ine the state distribution of the atoms to be the same as in the case of thermo
dynamic equilibrium. 

As is known, in this case the distribution of atoms in terms of discrete 
energy levels is given by the Boltzmann formula: 

"3
ni_-- - e  gi LT * (5.4)
ni gi 

where g. is the statistical weight of the i-th level. The quantity x1 - x. repre
1 1 

sents the excitation energy of the i-th level. 

Generalizing (5.4) to an atomic state with positive energy, one can obtain 
the ratio of the number of ionized atoms to the number of neutral atoms. This 
ratio is given by the formula 

XIn+ 
=2-

g+ (2nmkT)'/1 --
I t * -

ni g1 ha 
- e  &TI (5.5) 

which is called the ionization formula o r  Saha formula. Here n is the number e 
of f ree  electrons and n + 

is the number of ions in the ground state in 1 cm3 , g+ 

is the statistical weight of the ground state of the ion. 

Later we will present expressions for the absorption coefficients k.ir and 
o!
V 

1 1  for certain atoms and, utilizing Eqs. (5.2)-(5.5), we  will formulate an ex
pression for the volume absorption coefficient o! Formulas for the emission

V' 
coefficients corresponding to the different types of transitions, are not required
by us in photosphere theory since in the presence of thermodynamic equilibrium 
the volume emission coefficient E

V 
required by us  is expressed in terms of the 

volume absorption coefficient a! by means of the Kirchhoff- Planck law. v 

2. Absorption by hydrogen atoms. To calculate the absorption coefficients~ ~~~ 

in the continuous spectrum i t  is necessary to know the atom wave functions both 
for states with negative energy as well as for  states with positive energy. Cal
culation of the wave functions is ,  as is known, a very difficult problem. It is 
more o r  less satisfactorily resolved only for  the simplest cases. 

We will  now present the results of a determination of the absorption co
efficients for the hydrogen atom. The absorption coefficient kiv'  calculated for 
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one hydrogen atom in the i-th state, is equal to 

(5.6) 

where m and e are the electron mass and charge, respectively; g.
1v 

is some cor
rection factor close to unity (the so-called Gaunt factor). Equation (5.6) is Val
id only for frequencies satisfying the inequality v =- v. = Xi/h, i. e. , beyond the 

1 
i-th series. We see that beyond the series the absorption coefficient k. de

1v 

creases in inverse proportion to the cube of the frequency. The values of the 
absorption coefficient immediately beyond the first series are of the order of 

cm2 (0.63.10 -17 cm 2 immediately beyond the Lyman series, .1.4- lO-I7cm 2 

immediately beyond the Balmer series, etc. ). 

In order to find the volume absorption coefficient a'
V 

it is necessary to /57 
substitute Eq. (5.6) into Eq. (5.2). At the same time we assume that the state 
distribution of the atoms is given by Eqs. (5.4) and (5.5). From the last  two 
formulas we obtain 

Substituting (5.6) and (5.7) into Eq. (5.2), we find 

OD 2. 

(5.8) 

where the quantity x1' just as before, is the ionization energy of the f i r s t  state, 
equal to 

2x2me4 
xi = A= - (5.9) 

For  frequencies beyond the Lyman series io = 1in Eq. (5.8); for frequencies 

from the edge of the Balmer series to the edge of the Lyman series i0 = 2, etc. 

For  the absorption coefficient a"
V' 

caused by free-free transitions of an 

electron in the field of a proton, quantum mechanics yields 

(5.10) 
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where n- and n + are the number of free electrons and the number of protons in 

1cm 3 e  , respectively; gy is the Gaunt correction factor, approximately equal to 

unity. In the derivation of Eq. (5.10) it is assumed that the velocity distribution 
of the free electrons is given by the Maxwell equation with temperature T. ' The 
absorption coefficient a", just like k.

1v' is inversely proportional to the cube of
V 

the frequency. However, Eq. (5. l o ) ,  in  contrast to Eq. (5.6), is valid for all 
frequencies. 

However, Eqs. (5.8) and (5.10) are not completely exact since the so-
called negative absorption is disregarded. The negative absorption will be dis
cussed in detail in  Section 8. For the present, however, let us note that in the 
presence of thermodynamic equilibrium (more precisely, when the Maxwell, 
Boltzmann and Saha formulas are satisfied) the expression presented above for 

the absorption coefficient should be multiplied by the quantity (1-e-hv/kT 
) to 

take account of the negative absorption. 

Substituting (5.8) and (5.10) into Eq. (5.3) and taking negative absorption /58
into account, we obtain the following expression for the volume absorption co
efficient produced by hydrogen atoms : 

The frequency dependence of the absorption coefficient, given by Eq. 
(5. ll), is represented schematically in Fig. 5. We see that this function is 

4,

L d  

=; s PI Y 

Figure 5. 

very complex. There are conspicuous dis
continuities in the absorption coefficient a t  
the series limits. 

The frequency dependence of the ab
sorption coefficient for hydrogen-like ions 

(He+, Liff ,  etc. ) has a similar character. 
In this case the absorption coefficients are 
determined by the formulas presented above, 
slightly modified. For an ion with atomic 

number Z, a factor Z4 must be inserted in
to the right side of Eq. (5.6), and a factor 

2'-into the right side of Eqs. (5.10) and (5.11). In this case, x1in Eq. (5.11) 

should be understood to be the ionization energy of the ground state of the ion 
being considered. 

The formulas that have been presented can also be used for an approximate 
calculation of the absorption coefficients of non-hydrogen-like atoms. This can 
be done in those cases when the absorption is associated with the transitions of 
electrons from high energy levels. Generally, however, the absorption coefficients 
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of different atoms must be determined by specific calculations o r  experimentally. 
It turns out that the frequency dependence of the absorption coefficient is very 
different for  different atoms. For example, the absorption coefficient of the 
ground state of neutral helium is inversely proportional to the square of the fre
quency; the absorption coefficient of the ground state of neutral oxygen increases 
at first with an increase in frequency, and then decreases; etc. 

Among all non-hydrogen-like atoms, the negative hydrogen ion plays the 
major role in photospheres. Therefore we must consider the question of absorp
tion by negative hydrogen ions in more detail. 

3. Absorption by negative hydrogen ions. The negative hydrogen ion (de
noted by H-) is a system consisting of a netural hydrogen atom with an electron 
attached to it. Such a system has only one stable state with a very low ionization 
energy equal to x1 = 0.75 eV. For comparison let us note that the ionization en

ergy of the ground state of hydrogen is equal to 13.6 eV,  and the energy of quanta 
in the visible portion of the spectrum is equal to 2-3 eV. Consequently the ioni
zation frequency of the negative hydrogen ion, v1 = x1/h, lies in the far infrared 

region of the spectrum. In the photoionization of the negative hydrogen ion all 
quanta with frequencies v 2 vl, in particular quanta in the visible region of the 

spectrum, can be absorbed. 

The determination of the absorption coefficient of the H- ion has been the 
subject of many studies. The absorption coefficient kv, calculated for  one neg

ative hydrogen ion, is shown in Fig. 6 as a function of the frequency. This rela
tionship was  derived in Chandrasekhar's pa
per  [ll](subsequent studies have changed 
it little). From Fig. 6 i t  is seen that in the 
visible region of the spectrum the absorptionHiThcoefficient of the narrowrelatively H- ion limits. smoothly and 

2 

The volume absorption coefficient,

I caused by the negative hydrogen ion, is equal 
to a' = n-k where n- is the number of H

4QZ7 &XU &?RW 16%= V V' 
ai ions in 1em 3 . In order  to obtain the total 

Figure 6. 	 volume absorption coefficient of the H- ion, 
i t  is necessary to add to this expression the 
volume absorption coefficient a" caused by

V.' 
free-free transitions of an electron ir, the field of a neutral hydrogen atom (which 
plays the role of an ionized atom for the H- ion). It is obvious that the absorp
tion coefficient a'' is proportional to the number of neutral hydrogen atoms and the

V 

number of free electrons in l c m3 . Therefore, we can represent it in the form a1 1  = 

= n p av,where p =n kT is the electron pressure.l e  e e  
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Thus, the total volume absorption coefficient of the H- ion is equal to 

(5.12) 

where the factor (l-e-hv/kT), as before, takes account of the negative absorption. /GO-
To compute the absorption coefficient o!v from Eq. (5.12) i t  is necessary 

to find the number of H- ions in 1cm3 . This can be done with the help of the 
ionization formula (5.5), which in the given case assumes the form 

z1 
nl gi 2(25rmkT)*f~

ne-
ia-

=-
g- , h3 

e. m ,  (5.13) 

where g1and g- are the statistical weights of the ground state of the neutral hy

drogen atom and of the negative hydrogen ion, respectively (g1 = 2, g- = l), x1is the ionization energy of the H- ion. 

Substituting n- from (5.13) into (5.12), we obtain 

(5.14) 

The calculation of the absorption coefficient a from Eq. (5.14) was  done in the 
V 

work of Chandrasekhar and Breene (see [41). Their results a r e  presented on a 
graph giving the absorption coefficient av' referenced to one neutral hydrogen 
atom and to units of electron pressure, 	as a function of the wavelength for dif

ferent temperatures (Fig. 7). From the 
calculations in particular, i t  follows that

lzv-k7* the absorption produced by free-free 
2 - 	 transitions plays a significant role only 

for long wavelengthso(approximately for 
values of h > 12000 A ) .  

4. Light scattering by free elec
trons. In addition to light absorptionby 
atoms, radiation scattering-by free 
electrons, atoms and molecules-also 
plays some role in radiation transfer 
through the photosphere. Of the scat- /61 
tering processes, the most important 
is scattering by free electrons. 

The scattering coefficient, calcu
lated for one free electron, is given by 

0. ' I _  the Thomson formula: 
m 	 I J ~ moo am am 

A-A 

(5.15)
Figure 7. 
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where m and e are the electron mass  and charge, respectively, c is the velocity 

of light. The numerical value of this coefficient is equal to a. = 6.65. cm 2 . 
The volume coefficient of scattering by free electrons is equal to 

be = neuo, (5.16) 

where ne is the number of free electrons in 1cm3. Obviously one does not need 

to introduce a factor, taking account of negative absorption, into Eq. (5.16). 

By using Eqs. (5.16) and (5.11) one can compare the role of electron scat
tering and the role of absorption by hydrogen atoms. Finding, with the aid of 
these formulas, the ratio ae/av, we see that i t  is larger,  the lower the density 
and the higher the temperature. Therefore the role of electron scattering is 
especially significant in the photospheres of the hot supergiants. 

If light absorption and light scattering by free electrons occur in a volume 
element of the photosphere, then the volume emission coefficient is equal to 

(5.17) 

where a is the volume absorption coefficient and Iv is the intensity of the ra-
V 

diation incident on the volume. The difference between radiation absorption 
and scattering is clearly evident from Eq. (5.17): only the absorbed energy is 
converted in the volume element and reradiated by i t  in accordance with the 
Kirchhoff-Planck law (if local thermodynamic equilibrium exists). 

However, electron scattering does, nevertheless, contribute to the re
conversion of the radiation since i t  is by virtue of the electron scattering that 
the photon path length in the medium is increased and this means an increase 
in the absorption probability. 

In Eq. (5.17) the approximation is made that light scattering by free elec
trons is isotropic. In reality the intensity of the radiation, scattered by the 
volume element, depends on the angle y between the directions of the incident 

2and scattered radiation (namely, it is proportional to 1+ cos y ) .  Let us note 
that the radiation, scattered by free electrons, is polarized. 

5. Mean absorption coefficient. The results of a determination of the 
absorption coefficients for some atoms have been presented above. In each 
volume element of the photosphere there exists, in reality, a mixture of atoms 
of various chemical elements, Therefore the volume absorption coefficient de
pends not only on the physical conditions a t  a certain point (i.e. , on the temper
ature and density), but also on the chemical composition.h Because of this, the 
frequency dependence of the volume absorption coefficient is even more compli
cated. 
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Meanwhile, in the photosphere theory discussed in previous sections the 
assumption was made concerning the frequency independence of the absorption 
coefficient. With the rejection of this assumption, photosphere theory becomes 
much more complicated. Therefore a problem arises as to whether i t  is im
possible to make use of the results of the discussed photosphere theory even 
for  the case when the absorption coefficient depends on the frequency, at least 
as a first approximation. To this end the mean absorption coefficient (i.e. , the 
absorption coefficient averaged over the frequency) is introduced into the photo
sphere theory. An attempt has to be made to define it such that the previously
derived dependence of the temperature on optical depth can be retained. 

Let us take the radiative transfer equation 

a v  
cos it- =-d v +&. (5.18)

dr 

Multiplying this equation by cos 9, integrating over all directions and removing 
2the average value of cos 8,equal to 1/3, outside the integral, we obtain 

4x dfv  
--= - a a v ,  (5.19)
3 dr 

where H is the radiation fluxand 7 is the mean radiation intensity, equal to 
V V 

(5.20) 

Integrating (5.19) over all frequencies and introducing the notation 

5 a E d v  
a = - (5.21)

H ' 

we find 

(5.22) 

where H is the total radiation flux in the photosphere and l i s  the mean total 
radiation intensity. 

The quantity (Y, defined by Eq. (5. 21), is the mean absorption coefficient. 
Introducing the corresponding optical depth T from the formula 

(5.23) 
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instead of (5.21) we have 

(5.24) 

Since the radiation fluxH is constant the photosphere, then integration
of (5.24) yields 

HI=-
2x

(1 ++). (5.25) 

Here we have made use of the boundary condition: 2 6  = H �or T = 0. 

Considering that the quantity is equal to the total radiation intensity in  
-the. case of thermodynamic equilibrium, i. e. , I =crT4/n ,  and expressing the 

total radiation flux in  terms of the effective temperature Te through the formu
la H = U Te4, instead of (5.25) we obtain 

(5.26) 

i. e. , the previously derived Eq.. (4.20). 

Thus, by defining the mean absorption coefficient a! by Eq. (5.21) and mak
ing use of the Eddington approximation, w e  arr ive at the same relationship be
tween temperature and opti,cal depth as in the case when the absorption coeffi
cient is independent of the frequency. However, we cannot calculate the quan
tity a! precisely since the radiation fluxH

V 
in  a real  photosphere, in which the 

absorption coefficient depends on the frequency, enters into Eq. (5.21). There
fore the mean absorption coefficient- a! must be computed approximately. 

The following procedures have been proposed �or the approximate compu
tation of the quantity a!. 

1. We will assume that the radiation flux Hv is equal to the radiation flux /64 
of an absolute black body, i. e. , H

V 
= ?rB 

V
(T), where B

V
(7)is the Planckian inten

sity of temperature T. Then 

(5.27) 
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2. We will take the expression for H
V 

given by Eq. (5.19). 

in it by the Planckian intensity B (T). we obtain
V 

4n 1 dBv(T) dTn,= --
3 av dT dr' 

Substitution of (5.28) into (5.21) yields 

Equation (5.29) has been suggested by Rosseland [12]. 

Replacing 7
V 

(5.28) 

(5.29) 

3. 	 For H we will use the expression which is obtained in the case when 
V 

the absorption coefficient does not depend on frequency. Denoting the radiation 
0flux for this case by H v ( r ) ,  we obtain 

(5.30) 

Equation (5.30) was proposed by Chandrasekhar [4], who also tabulated the quan

tity H:(r)/H. 

We will not make a comparison between the different methods of calculat
ing the quantity G .  Let us  only note that calculations with Eqs. (5.27)and (5.30) 
are simpler than with Eq. (5.29). This is especially noteworthy in the case of 
a complex chemical composition since the terms corresponding to different 
atoms enter additively in  Eqs. (5.27) and (5.30). Equation (5.29), however, is 
obviously more precise. 

A s  an example let us find the mean absorption coefficient fror,: Eq. (5.27) 
in  the case when absorption is caused by hydrogen atoms. 

Using Eq. (5.11) for av and Eq. (4.2) for Bv(T), we obtain /65 

(5.31) 
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Here, for  simplicity, we have set giV = 1and gv = 1. Changing the order of in

tegration and summation and integrating, we obtain 

eD1avBv( T )dv =n,n+ 2&z2e6kT ~~ - - [1-+2,4$] .2h kT 

0 31~3~12(2nmkT)'11 13 b (5.32) 

Moreover, we have 

Substitution of (5.32) and (5.33) into Eq. (5.27), with relation (5.10) used, 
yields 

We derived Eq. (5.34) fo r  a hydrogen atom, but it is valid without change 
for hydrogen-like ions (since the atomic number Z enters in x,). Equation 
(5.34) is approximately valid for  other atoms. 

Let us recall that the f i r s t  term within the square brackets of Eq. (5.34) 
corresponds to free-free transitions, and the second term-to bound-free trans
itions. In the case of radiation absorption by hydrogen atoms the f i r s t  term 
predominates at temperatures above 400, 000", and the second term-at tem
peratures below 400,000" (since for  hydrogen Xl/k = 157, ZOO). 

Assuming that the hydrogen atoms are completely ionized (this means 
/66n = nf -p, in both of the cases cited we obtain 

e 

- da--
I"h (5.35) 

from Eq. (5.34) (for relatively high temperatures) and 

(5.36) 

(for relatively low temperatures). Equations (5.35) and (5.36) are used quite 
often in astrophysics. 
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6 .  	 Theory of Photospheres With a Frequency-Dependent 
Absorption Coefficient 

1. Approximate theory. The simplest way to construct an approximate 
theory for  photospheres, when the absorption coefficient depends on frequency, 
consists of using the results of the photosphere theory discussed above when it 
was assumed that the absorption coefficient was independent of frequency. It 
was for this reason that the mean absorption coefficient a! is introduced into the 
photosphere theory. As shown in the preceding section, i t  can be defined such 
that the dependence of the temperature T on the optical depth T remains the same 
as in  the case when the absorption coefficient is independent of frequency. There
fore the conclusions previously derived concerning stellar photosphere structure, 
i. e. , concerning variations in its density and temperature with geometrical depth, 
are retained (it is only necessary to replace o! by in the appropriate formu
las of Section 4). 

However, to determine the radiation field in the photosphere for  different 
frequencies i t  is necessary that the absorption coefficient o! or the correspondv 
ing optical depth T appear in the theory. Of special interest to us i s  the inv 
tensity of the radiation coming from a star.  As shown previously, i t  is deter
mined by Eq. (4 .30) ,  which is valid for any dependence of T v on v. We will as
sume that the temperature T entering into this formula is expressed by means 
of Eq. (5.26) in terms of the optical depth T corresponding to the mean absorp
tion coefficient. Therefore, for a calculation with Eq. (4 .30) ,  T must be ex

pressed in terms of T .  We will make the approximation that o! does not change 
in the photosphere, Then we obtain 

Q W 

In reality, the quantity a / &  depends on the depth in the photosphere. It 

is obvious that in order to calculate the radiation intensity coming from a s tar ,  
i t  is necessary that the value in the surface layers of the photosphere be taken 
for the quantity (YJ5 (more precisely, in those layers in which the continuous /67 

spectrum originates on the average). 

Substituting (6.1) into (4 .30) ,  we obtain 

for the intensity of the radiation coming from a star a t  an angle 9 to the radius 
vector at a frequency v, where B (T) is the Planckian intensity a t  temperature T. 

V 
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Taking (4.2) and (5 .26)  into consideration, instead of (6 .2 )  we obtain 

(6 .3)  

In the same approximation (i.e., for  &= const. ) we have 

(6 .4 )  

for  the radiation flux at frequency v a t  the surface of the star. 

The previously derived Eqs. (4 .39)  and (4 .40)  are special cases of Eq. 
(6 .3 )  and (6 .4 )  (for -fV = 7). 

Sometimes in the calculation of the quantity I (0, 9)from Eq. (6 .2 )  the 
V 

function B
V 

(T) is represented in the form of a power ser ies  in T: 

Bv( t )  =&(To) (1 + pVT+-..), ( 6 . 5 )  

in which only the first two terms are retained. We have 

or,  on the basis of Eqs. ( 4 . 2 )  and (5 .26) ,  

( 6 . 7 )  

For the quantity Iv(O, 9)we obtain the approximation 

or ,  after integration, 

(6 .9 )  
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Substituting ( 6 . 9 )  into (4 .35) ,  we obtain 

(6 .10 )  

for the radiation flux. 

Equations (6 .9 )  and (6 .10)  are quite crude approximations; however, it is 
clearly evident from them how the ratio aU/a! affects the quantities I (0,9) 
and Hu. 1, 

As is known, the brightness distribution over the stellar disk is given by 
the quantity Iv(O, 9). From Eq. (6 .9 )  i t  follows that at frequencies for which 
the absorption coefficient a!v is very large, the diskbrightness is approximately 

the same everywhere; a t  frequencies, however, for which the absorption coef
ficient is very small, the brightness falls off drastically from center to edge. 
As  an example, let us consider s ta rs  in the photospheres of which the absorp
tion is caused primarily by hydrogen atoms (i.e. ,  A and B class stars, as we 
will  see  below). From Eq. (5 .11)  i t  is seen that the absorption coefficient a!v 
immediately beyond the Balmer series limit is several times greater than be
low the limit (since io = 2 beyond the limit and io = 3 below the limit). There

fore the brightness distribution over the stellar disk at frequencies beyond the 
Balmer limit must be markedly different from the disk brightness distribution 
at frequencies below the Balmer limit. This conclusion can be compared with 
the results of observations of eclipsing class A and B variable stars. 

The quantity Hv characterizes the relative energy distribution in the con

tinuous stellar spectrum. The intensity discontinuities at series limits, caused 
by absorption coefficient discontinuities, are an important feature of the s ta rs  
of some classes. In particular, there should be discontinuities a t  the Balmer 
series limit in the spectra of class A and B stars (the intensity below the limit 
is greater than the intensity beyond the limit). The Balmer discontinuity can be 
determined approximately from Eq. (6 .10) .  More precise data on the Balmer 
discontinuities in stellar spectra will be presented below. 

By using Eq. (6.10) and the observational data on the energy distribution /69
in the continuous spectrum of a star, one can determine approximately the fre
quency dependence of the absorption coefficient in the photosphere (more pre
cisely, the frequency dependence of the quantity Such a determination 
has been made for  the Sun even though the problem concerning what atoms are 
the primary cause of absorption in the solar photosphere has not been solved. 
This analysis has greatly facilitated the solution of this problem. 

2 .  Case of absorption.- _ ~ _.. by atoms of one kind. The approximate theory dis
cussed above yields results which can be used only for crude estimates. Pass
ing over, now, to a more rigorous photosphere theory, let us  first consider one 
special case in which this theory is relatively simple. That is to say, let  us  
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assume that the absorption in the photosphere is caused primarily by atoms of 
one kind, i. e., by atoms of one element in a specific ionization state. In this 
case the volume absorption coefficient can be represented in the form of the pro
duct of two functions, one of which depends only on the frequency and tempera
ture, and the other-only on the temperature and density, i. e., 

cly = @(v, T ) Y ( T ,p). (6.11) 

The possibility of such a representation is seen, for example, from Eq. (5.11), 
which defines the absorption coefficient a! 

V 
for  hydrogen. 

If a!
V 

is given by Eq. (6. ll),then the radiative transfer equation can be 
written thus : 

where Bv(T) is the intensity of an absolute black body a t  temperature T and 

(6.13) 

The radiation equilibrium Eq. (1.17) in this case assumes the form 

(6.14) 

From Eqs. (6.12) and (6.14) one integral equation can be derived for de
termining the temperature T in the form of a function of l. If this function is 
determined, then from Eq. (6.12) one can determine the radiation intensity /70
I (L,4) and, inparticular, the radiation intensity at the boundary of the s tar ,

V 
i.e., the quantity I

V 
(0, 4). 

Introduction of the independent variable lmakes it possible to avoid find
ing the density distribution in the photosphere in the determination of the stellar 
spectrum. If, however, we are interested not only in the stellar spectrum but 
also the quantities T and p as a function of r, then, knowing the function T( c),
these can easily be determined from Eq. (6.13) and the mechanical equilibrium 
equation (4.52). 

Since the most prevalent element in the surface layers of s ta rs  is hydrogen, 
then one could suppose that radiation absorption in the photospheres of all s ta rs  
is caused primarily by hydrogen atoms. In reality, this is not the case. In the 
photospheres of s ta rs  of the later classes, the hydrogen atoms are almost en
tirely in the first state, so that they absorb radiation only, for the most part, 
beyond the Lyman series limit. Meamvhile, a t  low temperatures the distribution 
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curve of energy vs. frequency has a maximum in the infrared region of the spec
trum. Consequently, in the photospheres of stars of the later classes, radiation 
absorption by hydrogen atoms cannot play a significant role. 

With an increase in temperature, however, the number of hydrogen atoms 
in  excited states increases. At the same time, a shift of the maximum of the 
energy vs. frequency distribution curve toward higher frequencies occurs. 
Therefore, with an increase in temperature the role of hydrogen atoms in absorp
tion increases. Calculations show that in the photospheres of class A and B 
stars (more precisely, in stars with effective temperatures of the order of 
10,000-20,000") the absorption is produced primarily by hydrogen atoms. In the 
photospheres of the hotter s tars ,  helium atoms also play a significant role in 
absorption. 

Thus, for s ta rs  with Te N 10,000-20,000" the absorption coefficient is 
caused primarily by hydrogen and can be represented in the form of (6.11). The 
theory of the photospheres of these stars was developed by E.R. Mustel' [13]. 
Instead of considering the integral equation for  the function T(c) referenced 
above, he proposed to determine it by successive approximations from the equa
tion 

dT H_-a  OD 
9 (6.15)

i dKv 
-dv

4n IU)(v ,T)  dT 

where 

(6.16) 

Equation (6.15) is derived from (6.12) by multiplying the latter by C O S ~ / @ ( V ,  / 7 1T)  -
and integrating over all frequencies and directions. The quantity H is the total 
radiation flux in  the photosphere. A s  we know, H = const, which is the result  
of Eq. (6.14). A s  a solution of Eq. (6.15), one can assume Kv = Bv(T) as a 
first approximation. 

E. R. Mustel' calculated the energy distribution in the continuous spectrum 
of s ta rs  with effective temperatures of 10,500", 15,000 and 20,000". A portion 
of the results obtained by him is shown in Fig. 8 and Table 1. 

The theoretical energy distribution curve in the spectrum of a class B5 
star (Te = 15, 000") is presented in  Fig. 8 as an example. Also plotted here is 

the Planckian curve corresponding to the same temperature Te (the areas under 
4the curves are identical and equal to aTe/r) .  We see that the actual energy 

distribution curve in the stellar spectrum is very drastically different from the 
Planckian curve. The large discontinuities a t  the series limits should be 
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TABLE 1. SPECTROPHOTOMETRIC TEMPER
ATURES AND BALMER DISCONTINUITIES OF 

STARS O F  VARIOUS SPECTRAL CLASSES 
. 

- . .. 

10 500" 15 OOO" 
19 o 21 ooo Bo00 
16 590 ZOO0 26500 1 
10 5 0  15 OO0 19 ooo 
11ooo 16OOO 19 ooo 

0.49 0.22 0.10 
0.47 0.24 0.11 

_ _ _ ~  __ -

especially noted. The energy distribution curves in the spectra of stars of the 
types considered, obtained from observations, exhibit the same character. 

Listed in Table 1are the theoretical and observed values of the spectro
photometric temperature T and of the Balmer discontinuity D. Here  T '  and 

S S 

TI1represent the values of T 
S 

below the Balmer limit (i.e . ,  for  v < v2 ) and be-
S 

yond it, respectively. 

Let us  recall that the slope of the energy distribution curve a t  a given 
point in the spectrum is characterized by the spectrophotometric temperature. 
More precisely, i t  is defined from the condition that the derivative of the logar- /72
ithm of the spectral intensity is equal to the derivative of the logarithm of the 
Planckian intensity a t  the temperature Ts, i. e . ,  

(6 .17)  

Substituting here the expression for Bv(T), we obtain the following equation for 
determining Ts: 

(6.18) 

Insofar as the Balmer discontinuity is concerned, it is then defined by 
the formula 

(6.19) 
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From Table 1it is seen that the theory is in  good agreement with observa
tions. This says, first of all, that in the photospheres of the s ta rs  being consid

ered the major role in radiation ab
sorption actually belongs to hydrogen 
atoms. 

3. Photosphere models. As 
explained above, in the case when the 
absorption coefficient a! is represent-

V 
ed in the form of (6. ll), photosphere 
theory is greatly simplfied. In this 
case one can first calculate the radia
tion field in  the photosphere and then 
determine the photosphere structure. 
Usually, however, a! is not represent-

V 
ed in the form of (6 .11)  (since the ab-

Figure 8. 	 sorption is caused by different atoms), 
s o  that both of the problems mentioned 
must be solved concurrently. To do /73

this, several  of the equations already derived above must be solved together. 
We will now present these equations, which are the basic equations of photosphere 
theory. 

1) The radiative transfer equation: 

dIv
cos6-=

dr 
- a a , I v + ~ .  (6 .20 )  

2 )  The condition that the total radiation flux is a constant (equivalent to 
the radiation equilibrium condition): 

- I  

2x 5 dv) !  Iv cos 6sin 6 d 6  = UT$. (6 .21 )  
0 0 

3 )  The Kirchhoff-Planck law, expressing the assumption of local thermo
dynamic equilibrium: 

E, = a, -E 
2hg i . (6 .22)ca 

ekT --i 

4) The equation of photosphere mechanical equilibrium: 

(6 .23)  
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where 

p g = - p T ,  pr=-aTA. 
(6.24)

R. 1 
2r 3 

In these equations the given quantities are the effective stellar tempera
ture Te, the acceleration of gravity g at the surface of the star and the chem

ical composition of the photosphere. Moreover, the expression for  the absorp
tion coefficient av, which depends on the chemical composition and on the phys

ical conditions in the photosphere (i.e. , on T and p ) ,  must be assumed to be 
given. 

The solution of these equations results in a photosphere model, i. e., the 
dependence of the temperature T and density p on depth, as well as the radiation 
field in the photosphere. In particular, the theoretical stellar spectrum, which 
can be compared with the observed spectrum, is defined. 

The basic equations of photosphere theory are usually solved by themethod 
of successive approximations. In formulating tbe f i r s t  approximation, the mean 
absorption coefficient a and its corresponding optical depth T are used and it is 
assumed that the temperature T is related to T in the same manner as in thecase /74
when the absorption coefficient is independent of the frequency. In other words, 
it is assumed that 

(6.25) 

where 

From relations (6.23) and (6.26) we also have 

dP g 
- 9  (6.27) 

dT X 

where p = pg = pr. Since the quantity 2 can be expressed in terms of T and p,  
and the temperature T is expressed in terms of T by Eq. (6.25), then integra
tion of Eq. (6.27) allows one to obtain p as a function of T. Knowing the depend
ence of T and p on T, we can, with the aid of Eq. (6.26), convert from optical
depth T to geometrical depth z = ro-r, where ro is an arbitrary distance from 

the center of the star, adopted as the zero point for measuring depth. 

The calculation of photosphere models is very often concluded a t  the f i r s t  
approximation. Sometimes, however, subsequent approximations a r e  carried 
out; several procedures have been proposed for accomplishing these (see [13] 
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and 1141). A particularly convenient procedure has recently been developed by 
Averett and Krook [15]. Tables of values of the absorption coefficient a!

V 
and 

the mean absorption coefficient a! as a function of chemical composition, densi
ty and temperature have been compiled to facilitate the calculations (see, for 
example, [16]. Computers have recently begun to be used for  photosphere mod
el calculations. 

The results of a calculation of photosphere models for  stars of various 
spectral classes are presented below in the form of examples. 

4. Hot s tars .  In the photospheres of hot s tars ,  radiation absorption is 
caused primarily by hydrogen and helium. As already established above, in the 
photospheres of stars with effective temperatures of 10,000-20,000' the major 
role in absorption belongs to hydrogen. With an increase in temperature, how
ever, the role of helium in the absorption increases. As we wil l  see below, the 
number of helium atoms in photospheres is only about one order of magnitude 
less than the number of hydrogen atoms. In the photospheres of cold s tars ,  how
ever, the role of helium in the absorption is negligible. This is explained in 
the same way as the weak absorption by hydrogen atoms a t  low temperatures. 
The only difference lies in the fact that the excitation energy of helium is even /75-
higher than the excitation energy of hydrogen. Therefore absorption by helium 
atoms sets  in a t  even higher temperatures. With a further increase in temper
ature the absorption by ionized helium becomes significant. 

At  the same time, light scattering by free electrons plays an important 
role in radiation transfer in the photospheres of hot s tars .  This is related with 
the intense ionization of hydrogen and helium atoms a t  high temperatures. 

Photosphere models of hot s ta rs  have been computed by many authors. 
The results of Traving, who computed the photosphere model of the 10 Lacerta 
s ta r  (spectral class 09V, Te = 37,450", lg g = 4.45), are presented in Table 2. 

The columns of the table, in sequence, l ist  the optical depth T, the temperature 
T, the logarithm of the gas pressure p

g' 
the logarithm of the electron pressure 

pe and the geomtrical depth z in kilometers. The energy distribution in the con

tinuous stellar spectrum, found on the basis of this model, agreed well with the 
observed distribution (for example, the calculated Balmer discontinuity is equal 
to D = 0.044, and the observed value is D = 0.047). 

The results of hot star photosphere model calculations, carried out by 
Underhill, Hunger and other authors, also corroborate observational data on 
the energy distribution in the visible portion of the spectrum. In particular, 
for  many class B s ta rs  the computed and observed continuous spectra agree
satisfactorily with each other throughout the entire interval from 3400 to8000A. 

In recent years  spectrograms of class B stars in the far ultraviolet region 
have been obtained with the aid of rockets. A study of these has led to the con
clusion that there are significant differences between theory and observations 
since the values found for  the radiative flux have turned out to be several times /76 
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less than the theoretical values (by about a factor of three for  a wavelength of 
1314 A). A number of hypotheses have been advanced to explain this difference. 
Without dwelling on these, let us  note that agreement between observations and 
theory will apparently be achieved after various e r r o r s  in the observations are 
corrected, after some refinement of the photosphere models (in particular, by 
taking account of line absorption) and after an adequately precise determination 
of the magnitude of interstellar light absorption. A detailed comparison of the 
observed and calculated continuous spectra of class B stars has been made by 
Stromgren 1171. 

TABLE 2. PHOTOSPHERE MODEL O F  10 LACERTA 
__ 

T 


0 27 700 
0,Ol 29 COO 2,78 2,43 0 
0,02 29 700 3,06 2,76 850
0,04 30 800 3,31 3,01 1640 
0,OG 31 900 3,46 3,iG 2090 
0,08 32 so0 3,56 3,26 2420 
0,lO 33 500 3,64 3,34 2680 

_ _ ~  .. . 

0,20 36100 3,87 3,58 3520 
0,40 38700 4,09 3,81 4420 
0,60 40800 4,22 3,94 4970 
0,80 42300 4,31 4.03 5390 
f,OO 43500 4,37 4, fO 5730 
2,oo 47800 4,57 4.30 6340 
3,OO 50900 4,68 4.41 7580 

~ ~ _ _ _  ~. 

NOTE: Commas represent decimal points. 

5. Cold stars. As an example of a cold star, we will f i r s t  consider the-~ 
Sun. The Balmer discontinuity is not observed in the continuous solar spectrum. 
One thing this implies is that the prime role in absorption in the solar photo
sphere does not belong to hydrogen atoms. The determination of the sources of 
absorption in the solar photosphere has been an important problem-long before 
the advent of astrophysics. The frequency dependence of the absorption coef
ficient was found from observations with the aid of the approximate photosphere 
theory; however, no known atoms possessed such an absorptive character. Fi
nally, in 1939 Wild expressed the correct concept: the negative hydrogen ion is 
the primary source of absorption in the solar photosphere. 

A quantum mechanical calculation of the negative hydrogen ion involves 
considerable difficulties; however, they have been surmounted by Chandrase
khar (see Section 5). Calculations have shown that the absorption coefficient of 
the H ion has approximately the same frequency dependence as the absorption 
coefficient in the solar photosphere, determined by the method mentioned above. 
In particular, the absence of discontinuities in the visible portion of the solar 
spectrum is explained by the absence of discontinuities in the absorption coef
ficient of the H- ion. 

It has already been noted that the photosphere theory, when the absorption 
coefficient does not depend on frequency, yields fair results when applied to the 
Sun. This is associated with the fact that the absorption coefficient of the H' ion 
changes relatively slightly in that region of the spectrum in which the solar ra
diation is most intense. Making use of this last fact, Chandrasekhar developed 
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a special photosphere theory, for  application to the Sun, with an absorption co
efficient differing little from the mean value. On the basis of this theory some 
corrections were obtained for the temperature values previously determined for 
the case when the absorption coefficient does not depend on frequency (see [4]). 
A calculation of the solar photosphere model, using this theory, was performed 
by Munch. A portion of his results is given at the s ta r t  of Chapter 111, devoted 
to the Sun. 

The negative hydrogen ion, of course, plays a primary role in absorption /77
not only in the solar photosphere, but also in the photospheres of other s tars ,  
resembling the Sun. In general the H- ion plays the principal role in the forma
tion of the continuous spectrum of all cold stars (with effective temperatures 
somewhat less than 8000"). A higher temperatures, hydrogen atoms produce 
very intense absorption and it predominates over the absorption by the H- ion. 
Moreover, a t  very high temperatures these ions are small since the neutral hy
drogen atoms, which form H- ions upon meeting free electrons, are small. On 
the other hand, at  low temperatures the hydrogen atoms absorb weakly and their 
role in absorption is much smaller than the role of H- ions. Negative hydrogen 
ions are quite abundant in the photospheres of cold s t a r s  since nearly all the 
hydrogen atoms exist in the neutral state and free electrons appear through the 
ionization of metals. 

Along with the H- ion, metal atoms play some role in absorption in the 
photospheres of cold stars.  Absorption in the photospheres of the coldest s ta rs  
is also caused by molecules. 

Photosphere models of cold s ta rs  have been developed in a number of papers. 
In particular, V. G. Buslavskiy [18]developsd a photosphere model for a class 
MO star (with a surface temperature of 3000°C) under the assumption that ab
sorption is caused by negative hydrogen ions and by metals. The energy distri
bution in the continuous stellar spectrum was determined on the basis of the 
model. The calculated color temperatures w e r e  found to be in satisfactory 
agreement with observations. 

6. White dwarfs .  White dwarfs-stars with much lower luminosity than 
s tars  of the main sequence of the same spectral class-occupy a special place 
among stars.  The rad i i  of whitedwarfs are very small-about 0 . 0 1  of the radius 
of the Sun-but their masses are of the order of the Sun's mass. Therefore the 
gravitational acceleration a t  the surface of white dwarfs is very high-in some 
cases it amounts to lo1' cm/sec2. Such high g values lead to a number of spe
cial characteristics both in the structure of the photospheres of white dwarfs 
and in the energy distribution in their spectra. 

As an exa.mple of calculations of white dwarf photosphere models, we will 
present the results of A. K. Kolesov [lS]. Observations show only hydrogen lines 
are present in the spectra of some white dwarfs (the majority of them), whilein 
the spectra of the others-only helium lines. According, purely hydrogen and 
purely helium photospheres have been considered separately in the analyses. 
The calculations were carried out for surface temperatures To equal to 12,000, 

15,000 and 20,000" (and a t  To = 30,000" for purely helium photospheres), and 
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fo r  gravitational acceleration values g equal to 106, 108 and l o l o  cm/sec2. The 

results of a calculation for  the case of a purely hydrogen photosphere for To = 

= 15,000" and g = 108 cm/sec 2 are compiled in Table 3. 

TABLE 3. PHOTOSPHERE MODEL OF WHITE 
DWARF 

1p. 10-5 

= I d E 4  
15930 I 0.92 

19cxIo I 3:72 

0,200 0,361 0 
0,296 0,536 0, i lO 
0,443 0,799 0,229
0,577 1.02 0,323 
0,694 1.21 0,378 
0,802 1,39 0.433
1.28 2.18 0.621 

NOTE: Commas represent decimal points. 

The geometrical depth, in kilometers, is listed in the last column of 
Table 3. We see that unit optical depth corresponds to a geometrical depth of 
about 0.4 km. In other words, the "photosphere thickness" of white dwarfs is 
of this order, i. e. , it is extremely small. The photosphere thickness is much 
greater for other stars. For  example, as seen in Table 2, it is about 6000 km 
for  the s ta r  10 Lacerta. This difference is explained by the enormously high 
gravitational acceleration at the surface of a white dwarf, as a result of which 
a large pressure gradient is required in order to counterbalance gravity. 

The high pressures  in the photospheres of white dwarfs are reflected in 
their spectra. At high pressures the high discrete atomic levels do not occur 
because of the effect of the electric field of the ions and free electrons (see 
Section 8 for more details on this effect). Therefore the frequency of each 
series limit is lowered and ionization from the occurring low levels can be 
produced by low frequency radiation. The role of this effect is obviously dif
ferent a t  different points of the photosphere (namely, it increases with depth 
because of the pressure increase). Because of this the intensity discontinui
ties a t  the series limits should wash out in the formation of the stellar spec
trum. In particular, the Balmer discontinuity, lying in the visible region of 
the spectrum, should vanish. 

The theoretical spectrum of a s ta r  with a surface temperature of 15,000" /79 
near the Balmer series limit is shown in Fig. S, taken from Kolesov's paper. 
From the figure it is seen how the washing out of the discontinuity increases 
with an increase in the gravitational acceleration in the photosphere. At  high 
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values of g the discontinuities are practically absent. The observed spectra of 
white dwarfs exhibit precisely this behavior. 

7. Special Problems of Photosphere Theory 

1. Extended photospheres. The assumption made above concerning the 
fact that the photosphere thickness is much less. than the star radius cannot be 

applied to certain special stars (for example, 
to the Wolf-Rayet type stars).  This is the 
situation, then, when the density in the pho
tosphere decreases relatively slowly with 
an increase in distance from the center of 
the s tar .  In such photospheres the layers 
of isodensity should not be considered as 
plane-parallel, but spherical. 

-5-0 Let us  find the dependence of the tem
-J-<---g-9] perature on the optical depth in the case giv
-c---p'-R7. en. To do this, we must make use of the ra

diative transfer equation in the form of (1.20). 

; 7 8 9 ,  After integrating this equation over all fre-
V-@ quencies, we obtain 

Figure 9. 

where is the mean absorption coefficient. Denoting, as usual, E = GS, we 
have 

lhs= 51-
br' (7.2) 

as the radiative equilibrium condition. Integration of (7. 1)over all directions, 
with (7.2) taken into consideration, leads to the formula 

Ca=-
rt' ( 7 . 3 )  

where C is some constant. (It is obvious that 47rC is the stellar luminosity. ) -/go 

Multiplying ( 7 . 1 )  by cos8  and integrating over all directions, in the Ed
dington approximation we obtain 

(7.4) 
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or, on the basis of (4.15), 

For the absorption coefficient we will take the expression 

-	 P2a-- T' 

(7.5) 

(7.6) 

[compare with Eqs. (5.35) and (5.36)J and we will assume that the density in the 
photosphere is inversely proportional to some power of the distance from the 
center of the s tar ,  i. e., 

1 
P -7. (7.7) 

Substituting (7.3), (7.6) and (7.7) into Eq. (7.5) and integrating the latter,  
we obtain 

(7.8) 

where T 1 is the temperature at the distance r1' 

By using Eqs. (7.7) and (7.8), one can also easily derive the dependence 
of the optical depth T on the distance r. Substitution of these formulas into the 
relation d-r = -6d r  and integration yield 

(7.9) 

where, now, r1 represents the distance from the center of the star for T = 1. 

From (7.8) and (7.9) we obtain the des i red  dependence of T on T :  

(7.10) 

Let us take, for example, n = 2 and s 7 4. Then we have /81 

Thus, in an extended photosphere the temperature increases much more rapidly 
with the optical depth than in a photosphere consisting of plane-parallel layers. 
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Knowledge of the dependence of T on T makes i t  possible to calculate the 
energy distribution in the continuous stellar spectrum. To do this, i t  is neces
sary  to make use of the radiative transfer Eq. (1.ZO), after setting E~ = aVBV(T) 

on the basis of the hypothesis of local thermodynamic equilibrium. In the theory 
of extended photospheres, i t  was  initially assumed [19] that the absorption coef
ficient does not depend on the frequency. In this case a curve of the energy dis
tribution in the ,continuous stellar spectrum was obtained which differs very 
markedly from the Planckian curve-with a large excess of radiation in the ul
traviolet portion of the spectrum. When, however, the frequency dependence 
of the absorption coefficient is taken into account, this radiation excess is not 
obtained because of the heavy absorption beyond the limits of the principal atom
ic  series. It should also be borne in mind that very large divergences from lo
cal thermodynamic equilibrium are possible in extended photospheres. 

2 .  Blanketing effect. The continuous spectrum radiation of a s tar ,  pass
ing through the surface layers of a s tar ,  undergoes partial absorption in spec
tral  lines. The energy, absorbed in lines, returns to the photosphere. A s  a 
result, the radiation density in the photosphere is increased and, consequently, 
also i ts  temperature. This phenomenon is called the blanketing effect. 

We will  designate by A the energy fraction absorbed in the spectral lines. 
This quantity can be found directly from observations. For example, for the 
Sun i t  is equal to approximately 10%. 

Energy absorption in lines occurs in a surface layer with an optical depth 
of the order of several tenths in the continuous spectrum. For simplicity, how
ever, we will now assume that energy is absorbed in lines a t  the boundary of 
the star (at T = 0). Then, under the assumption that the absorption coefficient 
in the continuous spectrum does not depend on frequency (or  using the mean ab
sorption coefficient) the blanketing effect can be taken into precise consideration. 

In formulating the radiative equilibrium equation for the problem a t  hand, 
one must keep in mind that both diffuse radiation, coming from all sides, as 
well as radiation reflected from the boundary and attenuated along i ts  path, 
str ike each volume element in the photosphere. We will  denote the intensity 
of the diffuse radiation by I(T,p) and the intensity of the radiation reflected /a2
from the boundary-by I,. Then we obtain 

as the radiative equilibrium equation. 

Substituting into (7.12) the expression for  I(T, p) in  terms of S ( T )  obtained 
from the radiative transfer equation (i.e . ,  proceeding in the same manner as in 
the derivation of Milne's equation), we find 

(7 .13 )  
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To determine the quantity we must make use of the relation 

(7.14) 

which expresses the fact that a fraction A, of the energy incident on the boundary, 
is reflected. In the given case, obviously, the radiative flux must be the same 
as in the absence of the blanketing effect (i.e. , equal to TF). Therefore we have 

From (7.14) and (7.15) it follows that 

A

I .  	=- F.

: - A  

Substituting (7.16) into (7.13), we obtain 

When A = 0 ,  Eq. (7.17) passes over to Milne’s equation, 

It is easily verified that the solution of Eq. (7.17) has the form 

S(1)= - F + - 3A 
1 - A ’  4 +m 1 ,  

where q(7) is the Hopf function [see Eq. (2.50)]. 

4
Using the known relations S(T) =gT4/n and F =UT / T ,  instead of (7.18) 

(7.15) 

(7.16) 

(7.17)  

(7.18) 

e /83-
we obtain 

(7.19) 

From Eq. (7.19) it is seen how the blanketing effect influences the temper
ature in the photosphere. This formula, however, cannot be used withvery small 
7 values (because of the assumption made above concerning the fact that radiation 
is reflected from the star boundary itself). 

3. Effect of reflection in close-pairs. If two s ta rs  are in close proximity, 
then in studying their luminosity it is necessary to take into consideration the 
interchange of radiative energy between them. In this case the radiation reflected 
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from each star is added to the intrinsic radiation. In reality, of course, the re
flection process is very complicated: a temperature increase occurs in each 
s ta r  because of the effect of the radiation of the neighboring star, so that the 
amount of energy radiated by the star increases. 

Let us  write the radiative equilibrium equation for this situation. We will 
assume that at the boundary of the s ta r  A radiation from star B is incident with

in the solid angle 9 (Fig. 10). For  simplic
ity we will assume the angle 9 is small. The 
mean intensity of the radiation, incident with
in the solid angle 9, we will denote by Io, and 

the mean angle between the direction of this 
radiation and the normal to the photosphere 
layers-by 90. Then the radiative equilibrium 

equation will have the form 

B 

Figure 10. 

where I(T, p ' ,  ,u0) is the intensity of the diffuse Yadiation in the photosphere 

(p '  = cos9 ' ,  po =cos90).  

Using Eq. (7 .20 )  and the radiative transfer equation, just as in the deriva
tion of Eq. (2 .45) ,  we obtain 

(7 .21 )  
-/84 

Equation ( 7 . 2 1 )  belongs to the type of equations discussed in detail in Sec
tion 3. The solution of this equation will consist of two terms: the first term 
is determined by the energy sources existing within the star (at an infinitely 
great depth), and the second-by the energy entering the photosphere of star A 
from star B. On the basis of Eqs. (3.16) and (3.64) we obtain 

(7 .22 )  

where q ( p0) and @T) are functions defined by Eqs. (3 .53 )  and (3 .55 ) ,  respect
ively. 

When T = 0, the following simple equation is obtained from (7 .22):  

35 + Ion 
cp(W0)- (7 .23)S(0, Po)=--p4 
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4Since the quantity S(T, p o )  is proportional to T , then with the aid of Eq. 

(7.22) the temperature T at any optical depth and for  an arbitrary position of 
the neighboring star with respect to a given point in the photosphere can be cal
culated. Equation (7.23) allows one to determine the value of the surface tem
perature T0' 

If the temperature in the photosphere is known, then by using Eq. (6.3), 
one can find the intensity of the radiation emanating from a given point of the 
stellar surface at any frequency v. 

It is obvious that the temperature does not need to be known to determine 
the total radiation intensity. We will denote the reflection angle, i. e. , the an
gle between the direction of the radiation leaving the star and the direction of the 
radius vector, by 9 (cos8 = p) .  Then the radiation intensity I(0, p,  po) will be 
determined by the formula 

(7.24) 

into which Eq. (7.22) must be substituted. This substitution has already been 
done in Section 3. On the basis of Eq. (3.40) (in which m = l/po) and of Eqs. 
(3.57) and (3.63), we find 

(7.25) 

From the formulas derived it is seen that the reflection effect is greater, 
the larger  the ratio 10Q//7iF. This ratio can be represented in a more convenient 

/85 

form. If the solid angle !d is small, then we obtain 

I& =-	L B  
(7.26)4 d  ' 

where LB is the luminosity of star B and r is the distance between s ta rs  A and 

B. On the other hand we have 

(7.27) 

where LA and rA are the liminosity and radius of star A, respectively. From 

(7.26) and (7.27) it follows that: 

(7.28) 
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Calculations with these formulas show that the role of the reflection effect 
can be appreciable. It depends, of course, on the location of star B with respect 
to the point of interest in the photosphere of s ta r  A (it is greater, the smaller the 
angle 8). The reflection effect affects the curves of brightness variation of 
eclipsing variables. 

4. Polarization of-the radiation of hot stars. Light scattering by free elec
trons plays a large role inradiation transfer in the photosphere of hot stars.  In 
this case the light, scattered by a volume element, is polarized. Therefore the 
transfer of polarized radiation must be considered in studying the photospheres 
of hot stars. With the radiation polarization taken into account we should obtain 
more precise values of the total radiation intensity and also determine the state 
of the radiation polarization (i.e. , the degree of polarization and the location of 
the polarization plane). 

Light scattering by free electrons obeys a law which can be formulated in  
the following manner. Let I,I and I, be the intensities of linearly polarized ra
diation with the electric vector respectively parallel and perpendicular to the 
scattering plane (i.e. , the plane in which the incident and scattered rays lie). 
If the radiation strikes the volume element within a solid angle dw, then the 
amount of energy, scattered by this volume in a direction making an angle y 
with the direction of the incident radiation, in a unit solid angle is equal to 

3 
5 u I cos2 ydw/4x and -u Idw/4n respectively, with the scattered radiation haveII 2 e l  
ing its electric vector in the same direction as the incident radiation. Here ae 

is the volume coefficient of scattering by free electrons, defined by Eq. (5.16).  

As we know, the radiation field in the photosphere possesses axial sym
metry: the radiation intensity depends only on r and the angle 8 but is independ
ent of the azimuth. In a given case, therefore, it is sufficient to specify only 
two quantities (md not four, as in the general case) to characterize the polarized 
radiation. As these quantities we can take the radiative intensities Iz and Ir 

with oscillations in the plane passing through the ray and the normal to the pho
tosphere layer and the plane perpendicular to this, respectively. Instead of the 
intensities Iz and Ir, one can also take the intensities I and K, equal to 

(7.29) 

The quantity I is the total radiation intensity, and the quantity p = K/I is the de
gree of radiation polarization. 

For determining the quantities I and K we have the usual radiative trans
fer equations. 

dI 
cos*-= 

dr 
I-s, 

dK
~ 0 ~ 6 -=K - B ,  (7.30)

a7 
where d r  = -aedr. 
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On the basis of the law for scattering of light by free electrons one can de
termine that the quantities S and R entering into these equations are related to 
the radiation intensities I and K by the following radiative equilibrium equations: 

(7.31) 

where P2 ( p )  = 1/2(3p 2-1) is the second Legendre polynomial. In the derivation 	 /87-
of Eqs. (7.31) and (7.32) it is assumed that we are  dealing with a purely elec
tronic photosphere. 

We will not dwell on the derivation of the equations presented and their 
solution, and we will only give the results of the solution (see 141 and [ZO]). 
Values of the quantities I and K and the degree of polarization p for the radia
tion leaving the star are listed in Table 4. 

2,07 2.27 2,46-2,66
0,47 0.37 0,27 0.18 
2 , 3  1.6 i ,i  0,7 

-

From the table i t  is seen that the brightness distribution over the disk of 
a star with a purely electronic photosphere does not differ greatly from the 
brightness distribution over the disk of a normal s tar  (the ratio of the bright
ness at the center of the disk to the brightness at  the edge is equal to 3.04 in
stead of 2.91). Insofar as the degree of polarization is concerned, i t  is equal 
to zero at  the center of the disk and increases to 12.5% at the edge. 
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For real stars, however, the degree of polarization is less than listed in 
Table 4 since in photospheres energy absorption and emission by the atoms occur 
along with light scattering by free electrons. 

It is obvious that the radiation, coming from the entire disk of a spherical
ly symmetric star, will be unpolarized. Therefore this starlight polarization 
effect can be detected only through observations of eclipsing variables, one com
ponent of which is a hot star while the other is cold. In such a case the radiation 
of the system will be slightly polarized when the hot star is eclipsed by its cold 
satellite. This effect, predicted by the theory, was then actually detected through 
observations. 

Of special interest  is the fact that a new phenomenon-light polarization of 
uneclipsed stars and even light polarization of isolated stars-was discovered 
during these observations. Basically, this phenomenon is explained by the po
larization of the radiation during its passage through interstellar space (which 
we will discuss in detail in Section 32). In some cases,  however, this phenom
enon can also be caused by light scattering by free electrons. The polarization 
of the radiation of an uneclipsed binary system can be the result  of the scatter
ing of the light of one star a t  the free electrons in the photosphere of the other /88
star o r  in the gaseous s t reams which are sometimes observed inbinary systems. 
The radiation of an isolated star can be polarized because of light scattering at 
free electrons with a deviation from sphericity. 
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CHAPTER I1 

STELLAK ATMOSPHERES 

We will understand stellar atmosphere to mean the layer in which the stel- 
lar line spectrum forms. On the average the atmosphere is above the photo
sphere, which gives rise to the continuous spectrum. This is explained by the 
fact that the line absorption coefficient is much greater than the continuous spec
trum absorption coefficient. Therefore in the outermost portions of a s t a r  the 
continuous spectrum absorption no longer plays any appreciable role, but the 
line absorption remains significant. 

In the early days of astrophysics i t  was even assumed that there is a sharp 
boundary between the photosphere and atmosphere. In other words, i t  was  as
sumed that a continuous radiation spectrum with no lines comes from the photo
sphere, and absorption lines appear as i t  passes through the atmosphere (or, as 
it was called then, through the reversing layer). Nowadays this assumption is 
usually not made, i. e . ,  both line and continuous spectrum absorption are con
sidered to occur in every volume element. Even in this case, however, photo
sphere theories, i. e. , problems concerned with the formation of the continuous 
stellar spectrum, are studied first ,  and then atmosphere theories, i. e . ,  prob
lems concerned with the formation of absorption lines. In this situation the ef
fect of lines is usually ignored in photosphere theories, and in atmosphere theor
ies the solution of the problem of continuous spectrum formation is assumed to 
be known. 

In this chapter the problem of the spectral line absorption coefficient is con
sidered first, then the problem of the forrllaLion of stellar line spectra is solved 
and, finally, the various characteristics of stellar atmospheres are determined 
by comparing the theory with observations. It should be emphasized that most 
of our information about the stars is obtained on the basis of the radiation from 
their line spectra. Information on the chemical composition of stellar atmos
pheres, on motions in the atmospheres, on the rotation of s tars ,  on the magnet
ic fields of stars, etc., is obtained from the line spectra. Therefore the theory 
of the formation of absorption lines in stellar spectra occupies an exceptionally 
important place in theoretical astrophysics. 
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8. The Spectral Line Absorptiqn CoefficienJ 

1. Einstein transition coefficients. Spectral line emission and absorption 
are associated with -the transitions of an  atom from one discrete state to another. 
If an  atom is in an excited state, then it can spontaneously jump into any state with 
a lower energy. Whenanatom makes a spontaneous transition from the k-th state 
into the i-th, a photon with energy 

.hVik = E k  -Bi, (8.1) 

is emitted, where Ek and E.
1

are the initial and final energy states, respectively. 
The reverse  transition, whereby a photon is absorbed, can occur through the ac
tion of radiation of frequency vik can also produce an atom transition from the 
k-th to the i-th state, accompanied by the emission of a photon. This process is 
called stimulated emission o r  negative absorption. 

The probabilities of these processes are characterized by certain coeffi
cients, introduced by Einstein. Let nk be the number of atoms in the k-th state 

3in  1cm . Obviously the number of spontaneous transitions from the k-th to the 
3i-th state, occuring in 1cm during a time dt, is proportional to the number nk 

and the time dt, i. e. , i t  is equal to nk%dt. The quantity Aki is called the Ein

stein coefficient of spontaneous transition. The number of transitions from the 
3i-th to the k-th state, associated with the absorption of photons, in 1cm during 

time dt is equal to niBikpikdt, where ni is the number of atoms in the i-th state 
in 1cm 3 and pik is the density of radiation with frequency vik' The quantity Bik 

is the Einstein absorption coefficient. The number of transitions from the k-th 
to the i-th state, caused by radiation, in 1cm3 during time dt can be written in 
the form 

where Bki is the Einstein negative absorption coefficient. 

The Einstein transition coefficients are not independent, but are interrlated 
by two expressions. To derive these relations we will examine the thermodynam
ic equilibrium condition. In this case detailed balance occurs in which any pro
cess is compensated by reverse process. In particular, the number of transi
tions from the k-th to the i-th state is equal to the number of transitions from the 
i-th to the k-th state, i. e., 
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On the other hand, in the presence of thermodynamic equilibrium the atomic state 
distribution is given by Boltzmann’s formula /9 1 

(8.3) 

where gi and gk are the statistical weights of the states. From (8.2), with the 

aid of (8.3), we obtain 

(8.4) 

Comparing (8.4) with Planck’s formula (4.4), also applicable in the presence of 
thermodynamic equilibrium, we find 

(8.5) 

Thus, if one of the Einstein coefficients is known, then the other two are 
determined with the aid of the relations (8.5). Let us note that although these 
relations are derived under the assumption of thermodynamic equilibrium, they 
are always valid since the Einstein transition coefficients characterize the prop
erties of an atom and photon and are independent of what the atomic states are 
and what the photon frequency distributions are. 

A vast difference between spontaneous and stimulated radiation must be 
emphasized. During spontaneous transitions the photons are emitted in all direc
tions. In stimulated transitions the photons are emitted in the same direction in 
which the photons, stimulating these transitions, are moving. Therefore the in
tensity of the radiation beam striking the atom decreases because of absorption, 
but increases because of the stimulated transitions. This explains why stimu
lated radiation is also called negative absorption. 

From what has been sa id  i t  follows that the total number of photons, ab

sorbed in the line being considered in 1cm 3 during 1 second, is equal to 

On the basis of the second of relations (8.5), this expression can be rewritten 
in  the form 

8 1  




Thus, to take negative absorption into account the number of photons undergoing 
n *. -normal absorption must be multiplied by the quantity l - g i q g  k i  /92 

If the distribution of atomic levels is given by Boltzmann's formula (partic
ularly in the presence of thermodynamic equilibrium), then instead of the last ex
pression we have 

Consequently, in this case the factor that takes account of negative absorption is 

equal to l-e-hvik/kT. We have already made use of this result in discussing con
tinuous spectrum absorption (Section 5). 

Knowing the Einstein spontaneous transition coefficients makes i t  possible 
to determine the average lifetime of atoms in the excited states. Let nk(0) be the 
number of atoms in the k-th state at  time t = 0. Decay, because of spontaneous
transitions into all the lower lying levels. follows the law 

k-i 

dnk =-n k  2 Akidt, 
i=: 


or, after integration, 

where 

From this we obtain 

(8.9) 

for the average lifetime of an atom i n  the k-th state. 

*It is interesting to note that this quantity can become negative when the 
population of the upper level is large. In such a case the radiation intensity will 
increase as  i t  passes through the medium. This is the principle on which lasers 
are based. 
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For allowed transitions the values of 4x1 are of the order of 107 sec -1 . 
Therefore the average lifetime of an atom in an excited state is approximately 

sec. Metastable states, from which all transitions to lower lying levels 
are forbidden, constitute an exception. The values of are much smaller for /93

%l 
forbidden transitions than for allowed transitions. Therefore the average life
time of an atom in a metastable state is very long (sometimes amounting to sev
eral hours). 

The atomic wave functions must be known in order to calculate the Einstein 
transition coefficients. Since a determination of the wave functions is a very com
plex problem, the Einstein transition coefficients have been calculated for the sim
plest cases only. 

Values of the quantities Aki for  the hydrogen atom are given in Table 5. 

Here, i and k represent the principal quantum numbers, and the quantities 4n 
have the following significance. If nk is the number of atoms in all states with 

principal quantum number k, then the total number of transitions into the state 
with principal quantum number i, occurring in 1 sec, is equal to nkAki. Here 

i t  is assumed that the distribution of atomic states with different azimuthal quan
tum numbers is proportional to the statistical weights of these states. 

The Einstein transition coefficients Aki: Bik and BE are simply expressed 

in terms of the so-called oscillator strength fik. For example, the spontaneous 

transition Einstein coefficient is equal to 

(8. 10) 

where m is the electron mass and e is its charge. The quantity f ik is rlimension

less and represents the number of classical oscillators which replace one atom /94
in the absorption effect. 

2. Absorption coefficient caused by radiation damping and thermal motion 
of atoms. Spectral lines a r e  not strictly monochromatic. Photons of different 
frequencies, close to the central line frequency v0’ 

can be absorbed a t  each line. 

The absorption probability of photons of frequency v within a line is determined 
by many factors. Just  as before (see Section 1) we will characterize this prob
ability by the volume absorption coefficient, which we will denote by (T The 

V’ 
physical significance of this quantity, as we recall, is that the absorption prob
ability of a photon of frequency v along a path length ds is equal to uVds. Let us 

also note that the amount of energy of frequency v, absorbed in a unit volume in 
1sec, is equal to (r SI dw where I is the radiation intensity and the integrationu v  V 
is done over all directions. 
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TABLE 5. VALUES FOR THE HYDROGEN ATOM 

C 

~ 

I 

2 4,67 - 108 

3 5,54-107 4,39*10’ 

1 -- - I  

4 i ,27.107 8.37 106 8,9 4- 1 0 8  

5 4,10-10° 2,52.106 2,19-100 

6 1,64-1OG 9,68* 105 7,74.105 

7 7,53 * I O 5  4,37-105 3,34.105

8 3,85.105 2,zo. 1 0 5  1.64-105 


-- . 

Commas represent decimal points. 

Let the line being considered arise through the transition of an atom from 
3the i-th state into the k-th and let n. be the number of atoms per cm in the i-th 

1 

state, We can represent the quantity (T in the form (T = n.k where k is the 

V v 1 v’ V 
absorption coefficient, calculated for one atom. It is obvious that the quantities 
(T

V 
and k 

V 
depend on the indices i and k, but for simplicity of notation we will omit 

these indices, 

The absorption coefficient k is related in a simple fashion to the Einstein 
V 

absorption coefficient Bik’ In order to determine this relationship, let us  write 
the expression f.or the number of transitions from the i-th level to the k-th, oc

n 

curring in 1cm” in 1sec, f i r s t  with the aid of B
ik’ and then with the aid of k 

V‘ 
In the former case, the number of transitions is equal to niBikpik. In the latter 
case, the same number of transitions can be represented in the form n.Jk dv/1 v 
/hvJIvdw. Equating these two expressions and taking into account that SI dw= 

V 
-- cpv, where p is the radiation density, we find 

V 

Since the absorption coefficient k has a sharp maximum a t  the center fre-
V 

quency v
0’ 

the average value of the quantity p 
V
/hv can be taken outside the in

tegral sign. Then, instead of (8.11) we obtain 

hvokv dv =-Bik. (8.12)
C 
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The relation (8.12) is applicable in all cases, independently of what factors /95 
cause the shape of the function kv. In particular, from this relation i t  follows 

that the wider the frequency interval within which the quantity k
U 

does not differ 
drastically from its value at the center of the line, the smaller the average val
ue of the coefficient kv in this interval. 

The frequency dependence of the absorption coefficient k as already stat-
V’ 

ed, depends on a number of factors. Among these, the principal ones a re  thefol
lowing: 1)radiation damping (in terms of the classical electron theory) or the 
spreading of the atomic energy levels (in terms of quantum mechanics), 2) Dop
pler effect, occurring due to the thermal motion of the atoms. 

Let us first assume that the absorption coefficient is determined by radia
tion damping only. In this case, according to quantum radiation theory (see, for 
example, [ l l ) ,  we have 

(8.13) 


where rik= yi +Yk, and the quantity y k is given by Eq. (8.8). Let us denote the 

distance from the center of the line a t  which the value of k amounts to one-half
U 

the maximum value kU0by AuE. Obviously, AuE = rik/4n. The quantity 2AvE 
is called the natural spectral line width. From the width, expressed in frequen
cies, we can convert to width, expressed in wavelengths, by using the formula 
AhE = h o A v d v o .  The natural line width, expressed in wavelength, is of the or
der of 0.001 & 

We will now consider that the frequency dependence of k is determined 
V 

only by the thermal motion of the atoms. In this case the expression for k can 
V 

be derived very easily. Lf a stationary atom absorbs photons with frequency v0’ 
then a moving atom absorbs photons with frequency v = v + v o v ~ c ,where vX 
is the atom velocity projected along the radiation direction (x-axis). We will 
assume t m t  the velocity distribution of the atoms is given by Maxwell‘s equation, 
i. e. , the number of atoms with velocities from vx to vx + dv

X 
is equal to 

hfv,, 

dn - e Z k T  dv,, (8.14) 

where M is the atomic mass. Obviously the probability of absorption of photons 
with frequencies from u to v + dv is proportional to the number of atoms with 
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velocities from v to v + dvx. Therefore, for the absorption coefficient we have x x /96 

(8.15) 

where k0 is the value of k
U 

at the center of the line. 

We do not yet know the value of ko; however, in all cases,  when the line ab

sorption coefficient is known to within a constant factor, this factor can be found 
with the aid of Eq. (8.12). Substituting (8.15) into (8.12), we obtain 

(8.16) 

Equation (8.15) can be rewritten in the form 

(8.17) 

where A vD = v0v/c and v is the average thermal velocity of an atom, equal to 

v = d m . The quantity 2AvD is called the Doppler spectral line width. The 

Doppler width, expressed in wavelength, is of the order of 0 . 1  A (for an average 
atom velocity of about 1km/sec). Consequently, the Doppler width is much great
er than the natural width. 

It is easy to derive that the absorption coefficient, when radiation damping 
and Doppler effect are acting concurrently, is equal to 

(8.18) 

where 

(8. 19) 

and ko is given by Eq. (8.16). 

Introducing the notation kJ o  = H(u, a); we havek 

(8.20) 
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The function H(u, a) plays a very important role in the theory of stellar line 
spectra and, therefore, i t  has been investigated and tabulated. 

Because the quantity a is usually very small, i t  is convenient to expand /97
the function H(u, a) in a power series of a, i. e., to represent it in the form 

" ( y ,  a )  = &(u) 4 aH1 (u)+ u2flz(u) -I-... (8.21) 

It turns out that 

Ho@)..c e-=', (8.22) 

(8.23) 

and so forth. Values of the functions HO(u), H1(u) and H2(u) are listed in Table 

6 for some values of u. Detailed tables of the functions Hi(u) have been given 
by Garrison [ 2 ] .  

TABLE 6.  VALUES OF THE FUNCTIONS HO(u), H1(u) 
AND K p )  

HI (u) H ,  (4 
- - .  -

H* 
.. 

("1 n u .. ..- . . .. -. 

1,0000 -1,1284 +l,OOOo 0,0773 +0,3157I 8.2 I 0.9~08 -1,0495 +0,8839 0,0392 +0,2303
-0,8035 $0,5795 0.0183 +0,2317
-0,4555 +0,1953 +O,lSl9 

' 0 ; s  I 0;5373 -0,1672 -0,1476 SO,1165 -0, i21 
0,3679 +0,0859 -0,3679 --O.(I; '15::2" 1 0,2369 +0,2454 -0,4454 +0,0947 -0,CKiS

1,4  0,1409 +0,3139 ;-0,4i13 0 ; m t  I +0,07SS , -0,0021 

Commas represent decimal points. 

With the approximation that a << 1 in the central portions of the line, the 
absorption coefficient is equal to 

?cv =ko e-U'. (8.24) 

For regions far from the center of the line, from Eq. (8.18) we obtain 

The transition region between the regions where Eqs. (8.24) and (8.25) are ap
plicable is found from the condition that the values of k given by these formu
las, are of the same order in it. V' 

87 



It is easy to see that Eq. (8.24) is identical to (8.17) and Eq. (8.25)-to 
(8.13) (if, in the latter, Ti1(47r is neglected in comparison with \ v - v o ~ ) .  Con

sequently, near the center of the line the absorption coefficient is determined 
by the Doppler effect, and far from it-by radiation damping. 

3. Pressure effects. In the derivation of Eq. (8.18) only the natural 
spreading of atomic energy levels and the thermal motion of the atom were taken 
into consideration. However, the presence of foreign particles also exerts con
siderable influence on the form of the k function. We will call this influence 

V 
pressure effects (since this effect is greater, the higher the pressure). 

The simplest aspect of pressure effects is the collision of an atom with a 
foreign particle, whereby the excitation energy of the atom is transferred to the 
particle (collision of the second kind). Because of such collisions the average 
lifetime of an atom in an excited state will  be less than that determined from 
Eq. (8.9), and the energy level spreading-correspondingly greater. The latter 
comes about because of the Heisenberg uncertainty principle, according to which 
AEAt eh. With collisions taken into consideration, the average lifetime of an 
atom in an excited state is now given by 

(8.26) 

instead of by Eq. (8.9), where y is the number of collisions in 1sec, computed 
for one excited atom. C 

With collisions taken into consideration, the absorption coefficient will again 
be determined by Eq. (8.18) in which a will become the quantity 

(8.27) 

where Avc is the half-width due to collisions (i.e. , corresponding to the quantity 
Yc) .  

However, it is not just collisions of the second kind that influence the ab
sorption coefficient. The passage of foreign particles near the atom produces a 
much greater effect on it. Under such conditions the high field near the atom is 
altered, leading to a displacement of the energy levels. It is obvious that this 
displacement of the levels of a given atom changes with time, and for a specific 
instant of time the levels of the various atoms are displaced a different amount. 
Therefore this effect gives rise to a broadening of the spectral lines. 

The problem of determining the absorption coefficient is very complex 
when the passage of foreign particles near the atom is taken into consideration 
(see [3]). To solve it, one must take into consideration both the different types 
of atoms (neutral and ionized) as well as different types of foreign particles (free 
electrons, ions, neutral atoms, molecules). It is usually assumed that if the 

-/98 
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foreign particle is at a distance r from the atom, then the frequency is shifted by 
an amount 

(8.28) 

where k and Ck are some constants, different for different cases. When a charg

ed particle passes near the atom, k = 2 or  K = 4 (linear and quadratic Stark ef
fect, respectively). If the atoms being considered encounter atoms that are sim
ilar to them, then k = 3 (intrinsic pressure effect). For encounters of atoms with 
atoms of other elements or  with molecules, k = 6 (van d e r  Waals force effect). 
The constant Ck for  each case is determined from theoretical considerations or 

experimentally. 

Two methods have been developed for determining the absorption coefficient 
for a specified interaction law between the atoms and the foreign particles. The 
first of these consists of treating the encounter of the atoms with the particles on 
an individual basis, and then summing the results of the encounters (discrete en
counter method). The second method is based on a determination of the field in
tensity probability for a random distribu.tion of perturbing particles, which a re  
considered to be at  res t  (statistical theory). 

When the first method is used, the atom is usually replaced by a classical 
oscillator and i t  is assumed that each encounter of an atom with a particle leads 
to a change in the oscillation phase. The computation of the phase change is done 
for encounters with arbitrary impact parameters with Eq. (8.28) taken into con
sideration. A Fourier series expansion of the oscillation with a rapidly changing 
phase leads to an expression for the absorption coefficient, analogous to Eq. (8.13). 
When the thermal motion of the atoms is also taken into account, Eq. (8.18), in 
which the quantity a is given by Eq. (8.27) and Auc = yc/47r, is obtained for the 

absorption coefficient. A calculation of the quantity y 
C 

by the method given led 
to the following results for  the different cases: 

y3 =4n3C3n (for k= 3), (8.29) 

yc =38.SC?' v%t (for k =4), (8 .30)  

yc = 17.OCi'a~h ( for  k =6). (8 .31)  

In these formulas v is the average relative velocity of the atom and perturbing
3

particle, and n is the number of particles in 1 cm . 
Thus, in the approximate theory that has been assumed, the close approach /100

of perturbing particles to an atom affects the absorption coefficient i n  the same 
manner as collisions of the second kind. Moreover, this effect is similar to the 
radiation damping effect. Therefore the quantity y 

C 
is usually called the damp

ing constant due to collisions. 
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The statistical theory is very simple, if it is assumed that only particles 
very close to the atom cause a perturbation. Such an approximation can be made 
because the perturbations of remote particles compensate each other to some ex
tent. Let us denote the probability that a particle is a t  a distance from r to r +  
+ d r  from the atom by W1(r)dr.  As it is easy to show, 

(8 .32)  

where r0 is the average distance between particles, defined by the relation 

-
4
ar& = i. (8 .33)

3 

From the probability Wl( r )dr  we can, with the aid of Eq. (8 .28) ,  go over to the 

probability of different frequency shifts. Since the absorption coefficient k
V 

is 
proportional to this probability, we obtain 

(8 .34)  

Equation (8 .34)  obviously cannot be considered valid for small values of 
Av since small perturbations are caused primarily by remote particles. Large 
perturbations, however, are caused by the near particles. Therefore Eq. (8.34) 
can be used for large values of Av. In the given case, by replacing the exponen
tial factor in Eq. (8 .34)  by unity (this is possible when r << ro), we find 

(8 .35)  

Equation (8 .35)  gives an asymptotic expression for the absorption coefficient in 
the line wings. 

Of course, both theories considered would give indentical results if they / l o 1  
were precise. In both theories, however, simplifying assumptions are made so 
that each of them has a region of applicability. A study of this problem has shown 
that the discrete encounter method gives valid results for the central portions of 
the line, and the statistical method-for the outer portions. In other words, in 
the central portions of the line the absorption coefficient is determined by Eq. 
(8.18) with appropriate values of a and y and in the outer portions of the line-

CY 
by Eq. (8 .35)  (which, as already stated, is valid for  only these portions). 

The boundary between the regions of applicability of the expressions for 
k
V 

presented above depends both on the type of interaction between the atomsand 

90 

.-...... ..r1111-11-.111111 I . 11111-..I.IIIII , I  I111.111111 11-- I 1  I1 1111111.11111 I 11111111111111 I 1  I 111I I 



perturbing particles, and on the physical conditions in  the stellar atmosphere (it 
turns out that this boundary is farther from the line center, the greater the con
centration of perturbing particles and the lower the average relative velocity of 
the particle and atom). 

In stellar atmospheres different types of perturbing particles are present, 
and they all exer t  some influence on the absorption coefficient in a given line. 
Usually one kind of particle causes the major effect in the central portions of the 
line; in the outer portions-it is another kind. However, with a change in depth 
in the atmosphere the relative role of the different particles is altered. Of course, 
a change also occurs in the relative role of the particles when other lines andoth
er types of atmospheres are considered. Therefore it is a rather difficult task 
to take proper account of the effect of foreign particles (i.e. , of pressure effects) 
on the spectral line absorption coefficient. 

4. Stark effect. The presence of charged particles (ions and free electrons) 
near the absorbing atoms exerts an especially large influence on the absorption 
coefficient. In the electric field, created by these particles, a shift occurs in the 
atomic energy levels, i. e. , the Stark effect occurs. It is obvious that the level 
shift in different atoms a t  a given instant of time is different so that the spectral 
line is broadened. A s  is known, the linear and quadratic Stark effects are differ
ent. In the f i r s t  case the level shift is proportional to the f i r s t  power of the field 
intensity, in the second-to i ts  square. Corresponding to these two cases, in Eq. 
(8.28), defining the level displacement, k = 2 and k = 4 (since the field intensity 

-2is proportional to r . 
Let us now consider (in more detai l  than before) the linear Stark effect, 

which occurs in hydrogen levels and the upper helium levels. F i r s t  of all, we 
will assume that the perturbing particles are ions. Since the thermal velocities / l o 2  
of ions a re  relatively low, then in this case one can use the statistical (or ,  as i t  
is sometimes called, the static) theory. 

Above, an expression was derived for k v under the assumption that pertur

bation is produced only by particles near the atom. Now let  u s  take into consid
eration all particles, which we will assume to be randomly distributed in space. 

Let F be the intensity of the field created by a particle a t  a distance r from 
the atom, i. e. , 

(8.36) 

and F
0 

be the "average" field intensity, corresponding to the value r
0' 

defined 

by Eq. (8.33), i. e. , 

(8.37) 
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We will denote by /3 the quantity F/F 0’ and by W(p)d,&the probability that this 
quantity lies within the interval from p to p + dp. 

The function W(p), when the effect of all particles is taken into considera
tion, was first determined by Holtsmark [4]. It is given by the formula 

(8 .38)  

When p >> 1, from (8 .38)  we obtain 

and when p << 1: 

(8.40) 

Values of the Holtsmark function are given in Table 7. 

If we were to consider only the effect of the nearest  particles, then, using 

Eq. (8 .32)  and the fact that p = (ro/rf, we would obtain 

When p >> 1, Eq. (8.41) gives almost the same W ( )  values as Eq. (8 .38) .  This 
is explained by the fact that the higher field intensities are caused primarily by 
the nearest particles. 
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After determination of the W(p) function, the absorption coefficient kv can /lo3 

be found without difficulty. The quantity p can obviously be represented in the 
form p = (v-v,)/( A v),, where ( A  v ) ~is the line displacement for the field inten

sity F,. Therefore the probability of absorption of photons with frequencies from 
v to v + dv will be equal to W[(v-v,)/Av),l [dv/(Av),l. In actuality, however, a ~ 

line in an electric field is split into several  components. Let us  denote by I. the 
J 

relative strength of the j-th component and by b
j
-the displacement of this compo

nent for a unit field intensity (consequently, ( A v ) ,  = b .F ). Then for the absorp
tion coefficient we obtain J o  

(8.42) 

A s  is known (see, for  example, [3]), 

(8.43) 

where m and e are the electron mass and charge, n.
J 
is a whole number, depend

ing on the initial and final levels. 

In order  to completely determine kv, we use, as is usually done in such 

cases, Eq. (8.11). As a result  we find 

(8.44) 

The behavior of the absorption coefficient in portions of the line far from 
the center is of most interest. In this case, taking for W(p) only the f i r s t  term 
in Eq. (8.39), we have 

(8.45) 

This formula, as it should, exactly corresponds to Eq. (8.35) for k = 2. 

Let us convert from frequency v to wavelength h in Eq. (8.45) and write i t  
in the form 

(8.46) 
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where C is a constant that is different for  different lines. For  the Balmer lines, 

zomputations gave C = 3.13 .  for H a ,  0.885. for  HP' 0.442- for  
HY and 0.309. for H6' with h - h0 being expressed in angstroms. 

It  should be emphasized that the quantity Fo entering into Eq. (8.46) repre
sents the "average" intensity of the field caused by the ions. Substituting (8.37) 
into (8.46), we obtain 

(8.47) 

where n is the number of ions in 1 cm3. We see that in the wings of the hydrogen 
lines the absorption coefficient is greater,  the higher the ion concentration. 
Therefore one can expect broad hydrogen absorption lines in the spectra of stars 
with high densities in their atmospheres (especially in the spectra of white dwarfs). 

From Eq. (8.47) i t  is also seen that in the outer portions of the lines the ab

sorption coefficient, caused by the Stark effect, decreases as ( A  - ho)-5/2 . In 
this i t  differs significantly from the absorption coefficient, caused by damping, 
which decreases as ( A  - h 0 )-2. 

Let us now consider the question of what influence the Stark effect, produc
ed by free electrons, has on the absorption coefficient. In this case the method 
of discrete encounters can be used because of the high velocities of the free  elec
trons. It leads to the absorption coefhcient, given by Eq. (8.18) with the appro
priate collisional damping constant. It turns out that this expression for kh is 
valid out to a very great distance from the line center. Let us denote this limit
ing distance by Ah 

g' 
Value2 of the quantity Ah 

g 
(expressed in  angstroms), taken 

from Unsold's paper [Z],are given in Table 8 for some of the Balmer lines. Val
ues of Ah for the proton-caused Stark effect are given in the same table for com

g
parison. We see that in the latter case the Ah values are very small. For  h 

g- h 
0 

values exceeding Ah 
g' 

the expression for Kh,  given by the statistical theory, 

should be used. 

Calculations, made by the method discussed, led to the conclusion that the 
absorption coefficient, caused by electrons, is considerably smaller than the ab
sorption coefficient caused by protons. Therefore, the effect of electrons on the 
absorption coefficient was disregarded. Subsequently, however, it was establish
ed that experiment does not corroborate the theory based only on the effect of pro
tons being considered. In view of this, a number of investigations have recently 
been performed in which the simultaneous effect of protons and electrons on a hy
drogen atom has been examined. Moreover, the nonadiabatic effects, involved in 
in transitions between the components into which the energy level is split in an 
electric field, were taken into consideration (this had not been done previously). 
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TABLE 8. VALUES O F  THE QUANTITY M FOR 
THE BALMER LINES g 

I. T 
-. 

electrons I 250 

I 
{P rotons 0,63 1 . .  I 

electrons 4a I 

Ha {protons 0;05 
I 

slectrons 
'3, { protons

- _ _  
electrons 

1% {protons 
-I. - ~  ., 

Commas represent decimal points. 

As  a result i t  was shown that the effect of electrons on the absorption coefficient 
is significant (see, for example, [51). 

According to the results obtained, the absorption coefficient in the wings of 
the hydrogen lines is represented in the form 

(8.48) 

where the factor in front of the square brackets is the absorption coefficient / 106 
caused by protons, and the second term in the brackets takes account of the ef
fect of electrons. Values of the quantity R(ne, T) for three Balmer lines a r e  

given in Table 9 for different values of the electron density n and temperaturee 
T (it is assumed that h - h 0 is expressed in angstroms). 

I t  should be noted that these theoretical results agree well with experimen
tal data. 

9. 	 Absorption Lines in Presence of Local Thermodynamic 
Equilibrium 

1. Basic formulas. After the determination of the spectral line absorption 
coefficient, let us  pass on to the problem of the formation of absorption lines in 
the stellar spectrum. We will consider the line arising from a transition from the 
i-th state into the k-th of a given atom. We will denote, as before, the line absorp
tion coefficient by CT

V' 
and the emission coefficient-by E 

V' 
These quantities de

pend on the indices i and k, but for simplicity of notation we will omit them. Let 
us denote the continuous spectrum absorption and emission coefficients by (Y and v 
E v y  respectively. These quantities are caused by all the atoms in a given volume 
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TABLE 9. VALUES O F  THE QUANTITY R(ne, T) 

9 7 
10 1.05 0,i9 0.59 1,05 0.80 0.60 1.37 1,04 0.78 
12 0.82 0,63 0,48 0,81 0,62 0,48 1.03 0.80 0,62
14 0.59 0,46 0.36 0.55 0.45 0.35 0,70 0.56 0-45 
15 0,47 0.38 0,30 0.45 0,35 0.28 0.53 0.44 0.35 
16 0.35 0,30 0,25 0,33 0,26 0,22 0,37 0-31 0.26 
I? 0,24 0.22 0.19 0,21 0.17 0,15 0.21 0.19 O,i7
18 0.12 0.14 0,13 0,09 0.09 0.08 0-09 0,09 0.09 

. .- ~-

Commas represent decimal points. 

element. Within the line limits the coefficients avand E 
V 

are very slightly de
pendent on the frequency. 

Assuming that the atmosphere consists of plane-parallel layers, we obtain 
the following equation of radiation transfer in a spectral line: 

Here,  just as before, 9 is the angle between the radiation direction and the out
ward normal to the atmosphere layers, and the radiation intensity I depends on 
r and9. c 

In the discussion of the continuous spectrum of stars we made an assump
tion concerning local thermodynamic equilibrium. In this case we have 

EVO = avBv(T), ( 9 . 2 )  

where B
V

(T) is the Planckian radiation intensity for the given line frequencies. 

First of all, let us make a similar assuuiption in considering the formation 
of the spectral lines, i. e. , we will assume 

Ev = avBv(T). (9 .3)  

It is obvious that Eq. (9 .3)  must be applicable on a broader basis then Eq. (9 .2)  
since, on the average, lines appear in star layers that are nearer the surface 
than for the continuous spectrum. 

With the aid of (9 .2 )  and (9 .3) ,  instead of Eq. (9 .1 )  we find 

drv cose- -=  - (av+av)(Iv-By) .  (9 .4)dr 

/lo7
-

96 




Let ty be the optical depth in  the atmosphere at the frequency within the 
line, i.e., 

UJ 

tv = 5 [uv +uv)dr, (9 .5 )  
r 

Then Eq. (9.4) assumes the form 

cos 6 dr ,  ( tv ,  6)
=Iv( tv ,  6)-Bv( q. (9.6)

dtv 

Of greatest interest to us is the intensity of the line emission emanating
from the atmosphere. From Eq. (9 .6 )  we obtain 

(9 .7)  

Ior this quantity. 

The intensity of the radiation, leaving the atmosphere in the continuous 
spectrum in the neighborhood of the line, will be denoted by I 01(0,9). This quan
tity is equal to V / 10; 

r 

Ivo(0,O) =	$ Bv( T )e% 6cC sec 6dr,, ( 9 . 8 )  
a 

where 7 is the optical depth in the atmosphere in the continuous spectrum in the 
V 

neighborhood of the line, i. e. , 

-rv=1avdr. (9 .9 )-
The ratio 

(9.10) 

characterizes the absorption line profile at an angular distance of 9 from the ten
ter of the stellar disk. The quantity rv(9)can obviously be found from observa
tions for the Sun only (and in principle-for eclipsing variables). For conven
tional stars, however, only the absorption line profile in the spectrum of the en
tire disk is determined from observations. This profile is characterized by 
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the ratio 

E. r, =-
HvO ' (9.11) 

where H
V 

is the radiant flux emanating from the star at the frequency v within 
the line and H: is the radiant flux emanating from the star in the continuous 
spectrum in the neighborhood of the line. The quantity H

V 
is determined by the 

formula 

(9.12) 


where E t is the second integral exponential function. The quantity Hvois de2 v  
termined by a similar formula (with t

V 
replaced by 7

V 
) (see Section 4) .  

If the quantity r is known, then the so-called equivalent absorption line 
V 

width can easily be found. The latter represents the width of the adjacent por
tion of the continuous spectrum whose energy is equal to the energy absorbed in 
the line (Fig. 11). Denoting the equivalent line width by W, on the basis of the 

definition we have 

avow= 5 ( H V O  -Rv)dv, (9 .13)  

or,  with (9.11) used, / l o9  

w= 5 (1-rv)dv. (9 .14)
L 

V 


Below, we will make frequent use of these 
Figure 11. formulas defining the line profiles and equivalent 

widths . 
2. Determination of line profiles. To compute the absorption line profiles 

we must know the relationship between the temperature T and the optical depth 

%' The exact relationship between these quantities can be found only on the bas
is of a stellar photosphere model calculation. Thore is, however, some interest 
in the approximate relationship be twez  T and tu, which we are  no-v going to use. 

The following approximate formula, interrelating the temperature T and the 
continuous spectrum optical depth 7

VI 
results from Eqs. (7.1) and (7 .4) :  

BV(T)=&(To) ( f  +PVK..). (9.15)a 
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In the derivation of this formula it was assumed that the ratio of the continuous 
spectrum absorption coefficient av to the mean absorption coefficient a! does not 

depend on depth. Now we will assume that the ratio of the line absorption coef
ficient to the continuous spectrum absorption coefficient, i. e., the quantity uJ 

/av,also does not depend on depth. Then, on the basis of Eqs. (9.5) and (9.9), 

we have 

t v =  (?+ +. (9.16) 

Substitution of (9.16) into (9.15) yields 

(9.17) 

To find the quantity r (d),defined by Eq. (9. lo ) ,  we must substitute (9.17) /110
V 

into (9. 7)  and (9. 1 5 )  into (9.8). Doing this, we obtain 

(9.18) 

Equation (9.18) defines the line profile a t  an angular distance of 8 from the 
center of the disk. An expression for the quantity r characterizing the line pro-

V’ 
Me in the total stellar‘spectrum, is obtained in a simi1k-r fashion: 

(9.19) 

It should, however, be remembered that the approximate formulas (9.18) 
and (9.19) can, in some cases, be very inexact since the quantities uv /av ant1 

ruV/a, which we have assumed to be constant, can vary appreciably with deptl 
in real atmospheres. 

As already stated, preliminary stellar photosphere model calculations are 
necessary to obtain accurate line profiles. These calculations give the temper
ature and density distribution in the surface layers of the star, in  which the ab
sorption lines appear. Using such data, one can compute the absorption coef
ficients u and (Y at different depths, and therefore the optical depths tv and T ~ ,

1J 1)
in  the form of functions of the geometrical depth. 
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As an example of the construction of photosphere stellar models and the 
subsequent computatzon of continuous and line spectra of stars, one can cite the 
important work of de Jager and Neven CSI. These authors constructed 50 photo
sphere models with surface temperatures To from 4000 to 25,000" and with lg g 
values from 1 to 5. For each model the continuous spectrum eneygy distribution 
was determined, and the profiles and equivalent widths of many lines (hydrogen, 
helium, carbon, nitrogen and other atoms) were determined. A portion of the 
results, referring to the H

Y 
line, is given in Table 10. This table, compiled 

for the case To = 14,000", contains values of the quantity ry at different distances 

from the line center (expressed in angstroms) and for different lg g values. Val- /111-
ues of the equivalent width W, in angstroms, are given in the last column of the 
table. 

TABLE 10. THE QUANTITIES rv AND W FOR THE H
Y 

FOR DIFFERENT GRAVITATIONAL FORCES IN A 
STELLAR ATMOSPHERE 

0,70 0,74

0,72 0.76 

0,74 0,78

0,75 0,76

0,78 0,79

_ _ ~ _ _  

Commas represent decimal points. 

LINE 


In calculating the HY 
line profile, the absorption coefficient expression, 

taking the Stark effect into consideration, was chosen. As  is known, this effect 
is greater, the greater the density; and the density in the atmosphere is greater, 
the greater the gravitational force. This is demonstarted by the fact that the 
equivalent line width W increases with an increase in g. 

3. Weak lines and wings of strong lines. The formulas given above, which 
determine the absorption line profiles, are greatly simplified in the case of weak 
lines, i. e. , those for which u7,<< av* This inequality is obviously also valid 

for  the outer portions of strong lines (which are usually called ths line wings). 
Therefore the simplification of the formula for rvwill also apply to them. 

Let us consider any line in the total stellar spectrum. When the condition 
u
V 

<< a 
V 

is satisfied, Eq. (9.19) can be rewritten in the form 

(9.20) 

100 




We see that in  the given case the quantity 1-rvis proportional to the line 
absorption coefficient cr

V' 
The coefficient in front of cr v can be considered to be 

frequency independent. 

In the foregoing paragraph expressions were derived for  the absorption co
efficient in the outer portions of the line. Using these expressions and Eq. (9.20), 
one can determine the quantity 1-rV in the wings of strong lines. In particular, 

if uV is determined by radiation damping, then /112 

(9.21) 

and if cr
V 

is determined by the Stark effect, then 

(9.22) 

where D1and D2 are some constmts. It must, however, be remembered that 

only the effect of protons is taken into consideration in Eq. (9.22). If, however, 
the effect of electrons is also taken into account, then, as one can conclude on 
the basis of Eq. (8.48) for  the absorption coefficient, in sufficiently remote line 
wings the quantity 1-rh is again given by Eq. (9.21) (with, of course, another 

value for  the constant D1). The value of Ah, at which it is necessary to switch 

from one formula for  1-rA to the other in the case of the influence of the Stark 

effect, depends on the electron density and temperature. 

Equation (9.20) is approximate since it is based on the approximate formu
la (9.15) and on the assumption that the quantity aJcr 

V 
does not change in the at

mosphere. When the inequality u
V 

<< (Y
V 

is satisfied, however, one can obtain a 
simplified formula for  r without making these assumptions.

r/ 

On the basis of Eqs. (9.11) and (9.12) we have 

(9.23) 

Let us  examine the numerator of this expression. Making use of the equation 

d * ~  ($-I-1) dr,, 
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we can represent it in the form of a sum: 

For the first term we find 

(integration by parts is used here). In the second term, however, whenau << (Yv' 
one can simply replace tu by T

V' 
Therefore, instead of the relation (9.24) we 

obtain 

W W 

- $ d.rV[5 Bv(T')Eirw' drv' -BV(T)Ezrv] . (9.26) 
o *  4 

Substitution of (9.26) into (9.23) yields 

(9.27) 

where 

(9.28) 
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Equation (9.28) can also be rewritten in the form 

(9.29) 

Thus, for  the desired quantity rv we derived Eq. (9.27), in which the func- /114 
is given by Eq. (9.29). It is easy to see that when Eq. (9.15) is astion G ( T ~ )  

sumed for  B (T) and the quantity (T /avis assumed constant in the atmosphere,v v 
Eq. (9.27) passes over to the Eq. (9.20) given above. 

In Eq. (9.27) the function G(Tv) represents the weighting function for the 
quantity (T / a ,  . It is advantageous to use this formula for computations because 

v v 
the weighting function depends only on quantities characterizjng continuous spec
tra (but not lines), and is slightly frequency dependent. Therefore the weighting 
function for a given atmosphere can be tabulated beforehand and then the profiles 
of the different lines can be computed from Eq. (9.27). 

The problem of computing the quantity rv for weak lines and for  the wings 

of strong lines was f i r s t  considered by Unsold (see 171). We discussed above the 
"weighting function method", proposed by him, for the case when the local ther
modynamic equilibrium assumption i s  made. However, this method, with various 
modifications,' is also used in other cases. 

4. Deviations from thermodynamic equilibrium. The assumption we have 
made concerning local thermodynamic equilibrium greatly simplifies the theory 
of stellar spectra. An important question ar ises ,  however, concerning to what 
extent this assumption is valid. 

Let us turn, f i r s t  of all, to a comparison of theory with observations. From 
Eq. (9. 7) i t  follows that in going from the center of the disk to the edge the inten
sity of the continuous spectrum a t  the edge of the disk, i. e. , 

Iv(O, O)-tB,(T,) as O+--	
n (9.30) 
2 

In other words, the absorption lines should disappear a t  the edge of the disk. 
This is seen especially clearly from Eq. (9. l a ) ,  from which it follows that 
rv(8)- 1as 8 - ~ / 2 .  

However, observational data on the variation of line profiles at the Sun's 
disk show that in actuality the lines do not disappear at the edge of the disk. 
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It is easy to understand what gives rise to this discrepancy between the
ory  and observations. In the deep atmosphere layers atom excitation occurs 
primarily as a result of collisional effects. Because of the Maxwellian velocity 
distribution of the particles, a Boltzmann distribution of excited atomic levels 
is established. This, in  turn, leads to the fact that the ratio of the emission co
efficient E 

V 
to the absorption coefficient o!

V 
will be equal to the Planckian inten- /115-

sity for  a temperature equal to the kinetic temperature of the gas. Thus, one 
can assume local thermodynamic equilibrium ex.ists in the deep atmosphere lay
ers. However, as one passes to the shallower layers, the role of collisions in 
atom excitation decreases, and in the uppermost layers excitation is produced 
primarily by radiation. Because, however, the density of this radiation differs 
drastically from the Planckian density, the distribution of atomic states will no 
longer be determined by the Boltzmann equation. Therefore the Kirchhoff-
Planck law will not be obeyed. 

Thus, appreciable deviations from local thermodynamic equilibrium should 
exist in the upper atmosphere layers. This also explains why the line profiles 
computed under the assumption of the existance of local thermodynamic equili
brium do not agree with the observed line profiles. 

From what has been said it follows that in solving the problem of the for
mation of absorption lines in stellar spectra the line emission coefficient E 

V 
cannot be specified by Eq. (9 .3 ) ,  and it must be determined in  the course of solv
ing the problem itself. More precisely, the determination of absorption line 
profiles must be based on a concentration of radiation diffusion in the spectral 
lines. This we will do in the following paragraphs, For  the present, however, 
let  u s  note that a rigorous solution of the problem of stellar line spectra forma
tion involves considerable difficulty. Therefore, the formulas given above, bas
ed on the assumption of local thermodynamic equilibrium, are nevertheless often 
used for line profile calculations. This approximation can, evidently, be made 
for weak lines arising in relatively deep atmosphere layers. 

Let us mention again that the problem of deviations from thermodynamic 
equilibrium in stellar atmospheres has t een  examined in many investigations 
(see Bohm’s paper in [8]). Here, different aspects of this problem were stud
ied: 1)deviations from a Maxwellian particle velocity distribution, 2)  deviations 
from a Boltzmann atomic energy level distribution, 3)  deviations from the dis
tribution of atomic ionization states given by the Saha formula. Here, however, 
we cannot dwell on tnese investigations. Let us only mention that the fully de
tailed explanation of this problem is just as difficult as a rigorous solution of the 
problem of stellar spectra formation. 

10. Absorption Lines in Presence of Coherent Scattering / 116 

1. Schwarzschild-Schuster model. In the foregoing paragraph we made 
an assumption concerning local thermodynamic equilibrium in stellar atmos 
pheres and, in accordance with this, Eq. ( 9 . 3 )  was used for the line emission co
efficient 5 This assumption, however, is not corroborated by observations and,

V .  
therefore, we must consider the actual physical processes which give rise to the 
quantity E ~ .  As already stated, atom excitation in the outer layers of stars is 
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caused primarily by radiation. Consequently, the energy, radiated by any volume, 
depends on the radiation energy absorbed by this volume. Therefore, in order to 
write an, expression for E

V 
one must know the fraction of energy, radiated at fre

quency v within a given line, of the total amount of absorbed radiant energy. 

To determine the quantity E
V 

let us first make the following two assump
tions : 

1. We will assume that the amount of energy, emitted by a volume element 
in a given line, is exactly equal to the amount of energy absorbed by this volume 
in  the same line, i. e. , tnere is no energy redistribution between lines and, also, 
there are no other processep leading to the appearance o r  disappearance of quanta 
in the line being considered. In such a case one speaks of pure radiation scat
tering in the spectral line. 

2. We will assume that the energy, absorbed by avolume element a t  a given 
frequency within the line, is radiated by it at exactly the same frequency, i. e. , 
there is no frequency redistribution of the radiation within the line. This pro
cess  is called coherent radiation scattering. 

These assumptions were made as long ago as in the f i r s t  papers on the 
theory of stellar spectra and have been used for P. long time. Subsequently, i t  
was ascertained that they are far from being realistic. This led to different re
finements of the theory, which we will discuss later. 

From the assumptions made i t  follows that each volume element radiates 
as much energy a t  a given frequency within the line as i t  absorbs. Thus, we as
sume that a monochromatic radiative equilibrium is achieved in the stellar at
mosphere. The equation, expressing this equilibrium, is obviously written thus: 

where the integration is done over all solid angles. 

As  already stated in the introduction to this chapter, an abrupt boundary 
between photosphere and atmosphere was initially assumed to exist in the the
ory of stellar spectra. In this i t  was assumed that no absorption lines are pres
ent in  the radiation coming from the photosphere, and these lines appear as the 
radiation passes through the atmosphere. This model of the outer layers of a 
star is called the Schwarzschild-Schuster model. 

Using this model, we must set the continuous spectrum absorption and 
emission coefficients equal to zero in the radiative transfer Eq. (9 .1) .  In this 
case the radiative transfer equation assumes the form 

(10.2) 


/117 
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Let us  introduce the optical depth at frequency v 

(10.3) 

and let us designate 

Ev = O$v. (10.4) 

Then, instead of Eqs. (10.1) and (10.2), we obtain 

cos 6 
d l v  ( t v ,  �t) 

= I v ( t v , 6 ) - S v ( t v ) ,
dty 

(10.5) 

Let us  note that Eqs. (10.5) are formally no different from Eqs. (2.8) in  
photosphere theory. The Eqs. (2.8), however, refer to the integrated radiation, 
and Eqs. (10.5)-to radiation of a definite frequency I/ within the line. 

Boundary conditions must be added to the system of Eqs. (10.5). The con
dition a t  the upper limit of the atmosphere (for tV= 0) expresses the absence of 

radiation incident on the star from the outside: 

(10.6) 

The condition a t  the lower limit of the atmosphere (for tv  = t 0) must express the 
V 

intensity of the radiation, entering the atmosphere from the photosphere, is giv
en and is equal to the continuous spectrum intensity a t  frequency v (obviously, 
one can consider i t  equal to the intensity of the radiation emanating from the at-

/118 
mosphere in the vicinity of the line). Denoting, just as before, this intensity by 

IV
0(0,a), we have 

5L 
l v ( t v O ,  0)= I v o ( O ,  6) for  6 <2. (10.7)2 

Thus, the problem consists of solving the system of Eqs. (10.5) under the boun
dary conditions (10.6) and (10.7). 

The methods proposed in Chapter I can be used to solve the system of equa
tions that has been derived. Let us apply the f i rs t  approximation method (i.e. , 
the Schwarzschild-Schuster method) to it. 

Denoting the mean intensity of the upward directed radiation by I and the 
V 

mean intensity of the downward directed radiation by IV", instead of the system 
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of Eqs. (10.5), we obtain 

--=Iv'-Sv,i dI,' 1 dIv" -Iv" -sv,
2 dtv 2 dtY 1 (10.8)

is, =-2(IV' f Ivn). I 
From Eqs. (10.8) it follows that 

I,' - I," = Pv, Iv' + I,!' = 2Fvtv + C,, (10.9) 

where F
V 

and C
V 

are arbitrary constants. 

In the given case the boundary conditions (10.6) and (10.7) assume the form 
-

I'I ,  =0 for  h =0, I,' = F v O  for tv = t v O ,  (10.10) 

where 1: is the mean intensity of the radiation entering the atmosphere from the 
photosphere. With the aid of (10.10) we find 

(10.11) 

Knowing the arbitrary constants permits one to obtain the following expres
sion for the function Sv from Eqs, (10.8) and (10.9): 

(10.12) 

The intensity of the radiation, leaving the atmosphere, is equal to / 119 

in the case being considered. If we substitute here the expression determined 
for  S

V 
and we make use of Eq. (9. l o ) ,  then we obtain the desired quantity r 

V 
(&), 

characterizing the absorption line profile a t  an angular distance of 8 from the 
center of the disk. 

In order  to determine the quantity r
V' 

characterizing the line profile in the 

total stellar spectrum, one must find the radiative flux emanating from the at
mosphere a t  frequency v within the line and in the continuous spectrum in the 
neighborhood of the line. In the approximation that has been assumed, these 
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quantities are equal to 
-

Hv = nFV, Hvo =. dvo. (10.14) 

Substituting (10.14) into (9.11) and utilizing the second of Eqs. (10. ll),we obtain 

(10.15) 

Let us note that the quantity 1/(1+ tvo) is the fraction of the photosphere 

radiation at frequency v passing through the atmosphere (after multiple scatter

ing, generally speaking). The quantity tv0/(1+ t 0) is the fraction of this radia-
V 

tion reflected back into the photosphere. 

We can rewrite Eq. (10.15) in a somewhat different form. The quantity 

entering into it, representing the optical thickness of the atmosphere at fre
t V  
quency v, is equal to 

(10.16) 

where r0 is the radius of the base of the atmosphere. Let us represent the vol

ume absorption coefficient in the form m
V 

= nk
V 
, where n is the number of atoms 

in the lower state for a given line (or, as it is sometimes called, the number of 

absorbing atoms) in 1cm 3 and kv is the absorption coefficient calculated for one 

atom. Then, assuming that k is independent of position in the atmosphere, in
stead of (10.16) we obtain V 

tvo =kVNl (10.17) 

where 

(10.18) 

The quantity N is the number of absorbing atoms in a column with a 1cm2 cross /120
section above the photosphere. Substituting (10.17) into (10.15), we obtain 

(10.19) 

If we would have used the second approximation method (i.e . ,  the Edding
ton method) to solve the system of Eqs. (10.5), then the following expression 
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would be obtained for  the quantity r
V. 

(10.20) 

As we see, it is not too different from Eq. (10.19). 

2. Eddington method. The assumption made above concerning the division 
of the outer portions of a s t a r  into two layers, photosphere and atmosphere, is 
quite crude. We will now discard this assumption and we will assume that both 
continuous spectrum and line energy absorption and emission occur in each vol
ume element. We will call this model of the outer star layers the Eddington 
model. 

Strictly speaking, when the Eddington model is adopted, the problems of 
the formation of the continuous and line spectra of s ta rs  must be considered sim
ultaneously. However, the effect of line absorption and emission on the forma
tion of the continuous spectrum is slight, and in a f i r s t  approximation i t  can be 
ignored (this effect, as we known from Section 8, is taken into consideration in 
the second approximation in the form of the so-called “blanketing effect”). Con
sequently, in  solving the problem of the formation of stellar line spectra, all the 
quantities relating to the continuous spectrum can be assumed to be known. 

The equations determining the radiation intensity within the line in the case 
of the Eddington model have already been derived above. One of them is the ra
diative transfer Eq. (9. l), and the other is the radiative equilibrium Eq. (10.1). 
Equation (9.1) can be rewritten in the form 

cos 0	aIv 
= -(av-1- aV)1, + -ta&’v ( T ). (10.21) 

ar 

Here we have made use of the relation (9.2) since we are assuming the as
sumption of local thermodynamic equilibrium is valid for the continuous spectrum. 
Substituting (10.1) into (10.21), we obtain one integral-differential equation for /121 
determining the quantity I

V’ 

cos 6-	
dIv 

=- (UV + irv) IV+ uv 5 Zv-
do + avBv(T) .  (10.22)

dr 4x 

Introducing the continuous spectrum optical depth T
V 

by means of the rela
tion d7 = -a! dry  instead of (10.22) we obtain 

V V 



-- 

-- 

where 

(10.24) 

Generally speaking, the quantity q 
V 

is a very complicated function of the depth; 

however, in what follows we will assume for simplicity that q
V 

= const. 

Let us apply the Eddington method (see Section 2) to determine an approx
imate solution of (10.23). Beforehand, let us introduce the notations: 

(10.25) 

The quantity f represents the mean radiation intensity at a given point, and 
V 

47rH is the radiation flux. 
V 

After first multiplying Eq. (10.23) by dw/47r and then by cos &dw/4rr and 
integrating over all solid angles, we find 

dgv- I,-B,, (10.26)dzv 

1 d f v
- - - = ( i + q v ) R v .  (10.27)
3 dTv 

Here  we have used the approximation 

(10.28) 

From Eqs. (10.26) and (10.27) we obtain the following equation for deter
mining T * 

V .  

dLJv - 3(1 + q v ) ( f v - - v )  (10.29)
drvz 

For the quantity Bv(T), just as before, let us  take Eq. (9.15), i. e., we /122 

will consider i t  to be a linear function of T 
V' 

In this case the particular solu

tion of Eq. (10.29) will be simply equal to Bv(T). As  the general solution of 
this equation, however, we obtain 

where C and D are arbitrary constants. 
V V 

110 



It is obvious that in the deep atmosphere layers, where spectral lines are 
absent, Tv = BV' Therefore one must have D

V 
= 0. Consequently, we have 

(10.31) 

where pv* = pvJav. With the aid of (10.27) we obtain 

4 

(10.32) 

The boundary condition (10.6) must be used to determine the constant C
V.In the approximation that has been adopted, it can be written in the form 

7 ,=2Rv  (for t v = O ) .  (10.33) 

Substituting (10.31) and (10.32) into (10.33), we obtain 

(10.34) 

Since our problem is to determine the absorption line profile in the stellar 
spectrum, w e  must find the radiant flux emanating from the star, i. e. ,  the quan
tity H

V 
(0)  = 47ru

V
(0). Assuming T 

V 
= 0 in Eq. (10.32) and taking (10.34) into con

sideration, we obtain 

(10 .35)  

Outside the spectral line 3, = 0. Consequently, the continuous spectrum 

radiation in the neighborhood of the line is equal to 

i+-: Bv* 


13nv"0)=4nirBv(To)------. (10.36)
-i34- 2 

From 10.35) and (10.36) we obtain / 123 

rv= (10.37) 
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This formula determines the desired absorption line profile in the stellar 
spectrum. 

Let us  note that 7, >> 1 in the central portions of strong lines. Therefore, 

in the given case we have 

(10.38) 


We see that the quantity rv depends on p * only by virtue of the continuous spec-
V 

trum flux. In the central portions of the line, however, the flux is practically 
independent of p *. This is explained by the fact that the central portions of 

V 
strong lines are formed at the very surface layers of the atmosphere [where one 
can assume that B (T) = B (T )I.

V v o  

In the outer portions of the line 77 << 1. In this case Eq. (10.37) yields
V 

(10.39)  

Thus, the quantity 1-r 
V 

is proportional to the line absorption coefficient CT
V 

[as 

stated by Eq. (9.20) also]. 

With the aid of Eq. (10.21) and the expression derived for the quantity 1 
V' 

we can also determine the quantity r (a),but we will not discuss this. 
V 

3.  __IFluorescence in stellar atmospheres. The expressions derived above 
for  r define the theoretical absorption line profiles. However, these profiles

V 
(both in the case of the Schwarzschild-Schuster model and in the case of the Ed
dington model) do not agree well with the observed profiles. The discrepancy 
between them in the ratio of the central line intensities is especially large. The 
theoretical values of r for strong lines are much smaller than the observed val-

V 
ues (see Section 11for a detailed comparison of theory with observations). 

These discrepancies mean that the assumptions, made by us  in formulating 
Eq. (10. l), are not borne out in reality. One of these assumptions involved the /124
fact that pure radiation scattering occurs a t  each line. In reality, fluorescence 
processes, i. e.,  a redistribution of radiation between lines as well as between 
lines and the continuous spectrum, also occur in stellar atmospheres. Let us 
now try to take these processes into consideration. 

The problem of radiation redistribution between lines has not been consid
ered in detail up to the present time. It is obvious, however, that this process 
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cannot lead to an increase of the central intensities of all lines: if the intensity 
of one line increased, then the intensities of the other lines must decrease. 

The situation is different in the case of radiation redistribution between 
lines and the continuous spectrum. For  simplicity, let us  consider an atom hav
ing only three energy levels (1, 2 and 3), with the first two being discrete and 
the third corresponding to ionization. In addition to the pure spectral line scat
tering process ( 1 - 2 - l), previously discussed, the following two mutually 
opposed cyclical processes are also possible: 1)the -3 -2 -1 transition, i. e., 
ionization of the atom from the first state, capture of electron in the second 
state and line emission of a quantum; 2 )  the 1- 2 -3 -1transition, i. e., line 
absorption of a quantum, ionization from the second state and capture of an elec
tron in the f i r s t  level. Processes of the first kind obviously lead to the appear
ance of quanta in lines, and processes of the second kind-to the disappearance 
of these quanta. In the deep layers of the atmosphere, where thermodynamic 
equilibrium can be assumed to exist, these processes balance each other. In 
the outer layers of the atmosphere, however, processes of the f i rs t  kind pre
dominate over processes of the second kind. This is explained by the fact that 
the probability of processes of the f i r s t  kind depends only on the density of ra
diation beyond the fundamental series limit, and the probability of processes of 
the second kind-both on the density of radiation beyond the second ser ies  limit 
and on the spectral line radiation density. The continuous spectrum radiation 
density obviously does not change in the atmosphere. However, the spectral 
line radiation density decreases from the deep layers outward. 

Thus, radiation redistribution between lines and the continuous spectrum 
in stellar atmospheres leads more frequently to the appearance of line quanta 
than to their disappearance. In particular, the central intensities of the absorp
tion lines must increase because of this process. 

In order to determine line profiles when the effect of this fluorescence 
mechanism is taken into account, we must formulate and solve the appropriate 
radiative transfer equation. We will do this by following Stromgren's work [9]. 

We will use the Eddington atmosphere model and we will s tar t  from Eq. 
(10.21).  However, instead of Eq. (10. l), defining the quantity E we will  
write V' 

(10.40) 

where E is the volume emission coefficient, caused by processes of the f i rs t  
V 

kind, and y denotes the fraction of the spectral line quanta experiencing true 
absorption (i.e. , the fraction of atoms ionized from the second state); processes 
of the second kind are taken into account by the introduction of the quantity y.  

Employing the considerations discussed above, i t  is easy to find an ex
pression for the quantity E 

V 
I. In the deep atmosphere layers, where the number 
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of processes of the first kind is equal to the number of processes of the second 
kind, 

Ev' = yavfv. (10.41) 

Moreover, in these same layers v = B(T). Therefore instead of (10.41) we have 

Ev' = y a v B v ( T ) .  (10.42) 

One can assume that the expression derived for E ' remains valid as one goesv 
from the deep atmosphere layers to the shallower since the density of the radia
tion, producing ionization of the atoms from the ground state, does not vary in 
the atmosphere. However, in order to take account of a possible difference be
tween the density of this radiation in the stellar atmosphere and the density in 
the presence of thermodynamic equilibrium, let us introduce some correction 
factor Q on the right s ide  of Eq. (10.42). Then we obtain 

~v = (1 -y )  d v + Q y ~ v ' B v(T). (10.43) 

Substituting (10.43 into (10.21) and changing variables from r to T we 
obtain V' 

when 77 
V 

is defined by Eq. (10.24). 

We will obtain an approximate solution of Eq. (10.44), assuming that q v = 
= const. From this equation we have 

d f v  
=3 ( i  +q v ) R v .

dzv 

From this the following equation is obtained for determining?v' -

The solution of Eq. (10.47) has the form 

(10.45) 

(10.46) 

/126 

(10.47) 

(10.48) 
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where 

bZ =3(1 f 11v) (1 +yqv), (10.49) 
b rand C

V 
is an arbitrary constant. The constant associated with e v v is equal to 

zero since 
V 

cannot increase exponentially with an increase in T
V' 

Substituting 

(10.48) into (10.46), we obtain 

(10.50) 


Determining the constant C
V 

from the condition (10.33), we obtain the fol
lowing expression for the radiation flux of interest to us a t  the s ta r  boundary: 

(10.51) 


From this i t  follows that 

(10.52) 

. 13 
The formula derived for  T

V 
is an extension of Eq. (10.37) to the case when 

fluorescence is present. 

In order  to make use of Eq. (10.52), the quantity y must be determined. 
A s  already stated, it  is equal to the ratio of the number of ionizations from the 
second state to the s u m  of the number of ionizations and the number of spontan
eous transitions from this state. With the aid of the Einstein transition coef
ficients (see Section 8)  the quantity y is represented in the form 

In this formula 

(10.54) 


where vZ3 is the frequency of ionization from the second state, 
V 

is the ab- /127 

sorption coefficient beyond the second series limit. 

One can proceed as follows for  a rough estimate of the quantity y .  We 
will assume that the quantity BZ3pz3 is actually the product of the radiation 
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intensity p23 immediately beyond the second series limit and the Einstein tran

sition coefficient [determined in accordance with Eq. (10.54)] Then, represent
ing p23 and AZl in the form 

(10.55) 

(10.56) 

where 

(10.57) 

and assuming the approximations g2 e gl, u12 2 023, B12 B23, we obtain 

(10.58) 

A calculation of the quantity y from Eq. (10.58) for  atoms with about a 
3 e V  ionization potential from the excited state (for example, for  Na I and C a  I) 

gives y e for the temperature of the Sun. Calculations from Eqs. (10.53) 
and (10.54) lead to values of the same order  of magnitude (y = 0.0015 for  the 
sodium D1and D

2 
lines and y = 0.0004 for the h 4227 Ca I line). 

We will use Eq. (10.52) for rv and the estimates made of the quantity y 

below (in Section 11)in discussing the problem of the central intensities of ab
sorption lines. 

4. Exact solution of the problem. The problem, being considered by us, 
concerning the determination of absorption line profiles in the stellar spectra 
under the assumptions made above can be solved exactly. To obtain such a so
lution, we will employ the method proposed in Section 3. 

Let us take the radiative transfer equation in the form of (10.21), and we 
will specify the emission coefficient c 

1) 
by Eq. (10.43), i. e. , we will take fluor

escence into consideration. These equations can be rewritten in the form 

(10.59) 
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a! 

where dt
V 

= -(av + a!u ) dr  and /128 

(10.60) 

Just  as before, we will represent the function BV(T) by Eq. (9.15). Chang
ing from 7v to tu in it, we have 

(10.61) 

-
where B * = B  -

V v a ! v -

Solving Eq. (10.59) in terms of I and substituting the derived expression
V 

for I 
1, 

in terms of S
V 

into Eq. (10.60) (i.e . ,  proceeding in the same manner as 
in Section 2 in deriving Milne’s equation), we arrive a t  the following integral 
equation for  determining the function Sv(tv): 

(10.62) 

where 

(10.63) 

Let us  rewrite Eq. (10.62) in the form 

(10.64) 

omitting, for  simplicity, the subscript v for awhile. The free te rm of this equa
tion is a linear function of t, i. e. , 

g( t )  = co 4- Clt .  (10.65) 

We see that Eq. (10.64) belongs to the type of equations discussed in detail 
in Section 3. If we set 

(10.66) 
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-- 

in  Eq. (3. l ) ,  then we will obtain Eq. (10.64). When the kernel K(t) is represent
ed in the form of (3.17), we have A(x) = h/2x. 

According to the method proposed in Section.3, the solution of Eq. (10.64) 	 /129 
must begin with a determination of the function S ( 0 ,  x), defined by Eq. (3.20). In 
the given case, assuming x = l / p  and S(0, x)  = cp(p), instead of (3.20) we have 

(10.67) 

When h = 1, the. previously discussed Eq. (3.53) is obtained from (10.67). 

The function (p(p), first introduced by V. A. Ambartsumyan, was then in
vestigated in detail by a number of authors. Values of this function are given in 
Table 11, and in Table 12-values of its moments [i.e., the quantities defined by 
Eq. (3.59)l. 

TABLE 11. VALUES OF THE FUNCTION ~ ( p )  
- . _- . . 

0 0.4 0.6 0.8 0.85 I 0.33 0,325 0,95 0.375 i 
- _ _  . 

1,oo 1,on 1,oo 1 ,oo 1,o0 1,0o i ,on 1,oo 1 ,oo 1 9 0 0
1,oo 1.06 1.09 1,14 1,15 1,17 1,18 1,20 1,2i 1.25 
1,oo 1,09 1,15 1,23 1,26 1,29 1,31 i ,34 1,37 1,45
1,oo 1,11 1,19 1,30 1,34 1,39 I,42 i ,45 1,51 1,64 
1,oo 1,13 i,22 1,36 1,41 1,45 1,52 1,57 1,e4 1,aI,oo 1,14 1,25 1,41 1,48 1.56 1,61 1,G7 1,76 2.01 
1,oo 1,15 1,27 1,46 1,53 1,63 1,69 1,77 i ,88 2.19 
1,oo 1,16 1,29 1,5n i,58 1,s9 1,76 1,85 1,95 2,37
1,oo 1,17 1,31 1,54 1,63 1,75 1,83 1,93 2,08 2.55
1 ,oo 1,18 1,32 1,57 1.67 1,81 1$39 2,01 2,18 2,73
1,oo 1,18 1,34 1,60 1.71 1,85 1.95 2,os 2,27 2,91 
... ~ . .  

7 

TABLE 12. VALUES O F  THE MOMENTS O F  THE FUNCTION q(p' 

1,38 1,44 1,52 i ,57 1,e3
0,74 0,77 0,83 0,SG 0,90
0,50 0,53 0.57 0,59 O,G3- .: 

Commas represent decimal points. 

The function S(t), a solution of Eq. (10.64), can be expressed in terms of 
the function cp(p). However, right now only the absorption line profiles are of 
interest to us. Therefore we must determine only the intensity of the radiation /130 
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emanating f rom the atmosphere, i. e. , the quantity I(0, p) .  As we know, the 
quantity I(0, p )  is a lso  expressed directly in terms of the function q ( p ) .  

In  the given case, i. e. , when g(t) is a linear function of t, we must  use 
Eqs. (3.41) and (3.48) to  determine the radiation intensity I(0, p).  The first of 
these is obtained when g(t) = 1, the second-when g(t) = t. As seen from Eq. 
(3.27), for  a kernel of the form of (10.66) 

i
S(0,O) =-

jT=i- (10.68) 

Therefore we find 

(10.69) 

where Q1is the f i r s t  moment of the function ( p ( p ) .  

Comparing the free te rm of Eq. (10.60) and Eq. (10.65) for  the function 
g(t), we obtain the following expression for  the intensity of the radiation eman
ating from the atmosphere at frequency v: 

L avlxB, . (To)  [if E(pf--- ___ 
(10.70) 

1+q v  2 v'i -x ,  

Here (p) denotes the function cp(p), defined by Eq. (10.67) for the h value given
V 

by Eq. (10.63). 

The intensity of the radiation, emanating f rom the atmosphere in the con
tinuous spectrum in the neighborhood of the line, is obtained from (10.70) for  

77, = 0. I t  is equal to 

I V O  (0 ,p) = Bv (To)(1 -I- P v * p ) .  (10.71) 

F r o m  (10.70) and (10.71) it follows that the quantity r (p), determining
V 

the absorption line profile at an  angular distance of a rccos  p f rom the center of 
the disk, is given by the formula 

(10.72) 
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For a homogeneous atmosphere (i.e. , when ,B * = 0) and in the absence of
V 

fluorescence (i.e. , when y = 0), from Eq. (10.72) we obtain 

(10.73) 

Equation (10.72) (for Q = 1)was f i rs t  derived by Chandrasekhar [ lo] .  
11. A b s o r p t i o n p r e s e n c e  of Noncoherent Scattering 

1. Frequency redistribution within the line. During the discussion in the 
preceding paragraph of the problem of the formation of absorption lines in stel
lar spectra, two assumptions were made: 1)concerning pure scattering in the 
spectral line (i. e. , concerning the absence of energy redistribution between the 
lines as well as between the lines and the continuous spectrum), 2) concerning 
coherent scattering (i.e., concerning the absence of frequency redistribution of 
the radiation within the line). However, the line profiles calculated with these 
assumptions a re  very much different from observed profiles. This means that 
these assumptions do not hold up in reality and they must be discarded. Taking 
flurorescence (more precisely, radiation redistribution between lines and con
tinuous spectrum) into account, already done above, appreciably reduces the 
discrepancy between theory and observations. Now we will also take into con
sideration the noncoherency of the scattering, i. e. , the change in the radiation 
frequency due to the elementary scattering act. 

Let us f i rs t  enumerate the causes leading to the frequency redistribution 
of radiation within a line. 

1. Natural broadening of the atomic energy levels. If the levels arebroad
ened, then the atom can absorb photons of one frequency, and emit photons of 
some other frequency, with the atom returning, after the scattering process, to 
a state not exactly the same as  the initial state. This effect plays a role in the 
case of subordinate ser ies  lines, for  which both the upper and lower levels are 
broadened, In the case of the fundamental series,  however, for which the lower 
level can be considered to be infinitely narrow (if only because an atom is not 
often removed from the ground state for any reasons), the frequency of the emit
ted photon is the same as the frequency of the absorbed photon. 

2. Thermal motion of the atoms. Let a moving atom absorb a photonwith 
a certain frequency. Since this atom can emit a photon in any direction, then 
because of the Doppler effect the frequency of the emitted photon can be differ
ent for a stationary observer. Therefore, the frequencies of photons absorbed 
and emitted by a moving atom are  not, generally speaking, identical. This is 
true even when light scattering by a stationary atom occurs without a change in 
frequency. 

3. Pressure effects. At the instant of photon absorption by an atom, let 
there be a perturbing particle near the atom. During the time in which the atom 
remains in the upper level, the particle can move away from the atom so that 
the energy level shift caused by i t  is changed. Under this condition the frequency 
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of the emitted photon will  differ from the frequency of the absorbed photon. The 
difference in photon energies is carried away by the perturbing particle. 

Let us denote by p(v, v')du the probability that a volume element, after hav
ing absorbed photons of frequency V I ,  subsequently emits photons in the frequency 
interval from v to v + dv. The function p(v, V I )  is determined by the causes that 
have been enumerated and, generally speaking, is extremely complicated. 

As long ago as 1929, Eddington pointed out the necessity of taking nonco
herent scattering into account in the theory of stellar spectra. Subsequently, 
astrophysicists carried out many analyses to determine the function p(v, ut ) .  
Considerable work on this subject has recently been done by Hummer [ l l l .  

We will not now concern ourselves with a detailed discussion of the function 
p(v, V I ) ,  but let us only mention two special cases. Let us first assume that 
pressure effects play no role, i.e., the function p(v, V I )  is the result of natural 
broadening of the levels (in other words, radiation damping) and of the thermal 
motion of the atoms only. In this case, the following formula, defining p(v, V I ) ,  

w a s  obtained for the resonance line: 

where 

(11 .2)  

r is the volume absorption coefficient, equal to (T 
1, 

= nkv* The quantity k 
V 

is 
defined by Eq. (8.17), and the other quantities in (11.1)have the same meaning 
as in (8.17). In the exact formula for p(v, V I ) ,  the scattering angle also enters. 
Equation (11.1)can be derived from the exact formula by integrating over the 
angle. 

In the other special case, let us assume that pressure effects exert the 
principal influence on the form of the function p(v, VI). If, during the lifetime 
of an atom in an excited state, the perturbing field changes very drastically, 
then one can assume that the frequency v of the emitted photon is independent 
of the frequency v' of the absorbed photon. In this case the function p(v, u ! ) ,  
which we can denote simply as p,, is very easy to determine. 

The function p(v, V I )  must obviously satisfy the condition 

$ p(v,v')dv =I, (11.3) 

where the integration is carried out over all frequencies. Moreover, the rela
tion 

p (v ,  Y ' )  O V '  =p (V I ,  v )  uv, (11.4) 
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expressing the "reciprocity principle" for optical phenomena, must be sat
isfied. 

If the function p(v, V I )  does not depend on V I ,  then from (11.4) it follows 
that p

V 
= cc

V
,, where c is a constant. Determining c from Eq. (11.3), we obtain 

(11.5) 

We will say that in the case given a complete frequency redistribution of the ra
diation occurs during the elementary act of scattering. We will call such radi
ation scattering completely noncoherent. 

The formulas presented for the function p(v,  v') correspond to different 
pressure values: a t  low pressures Eq. (11.1)should be used, at high-Eq. (11.5). 
Equation (11.1)should obviously be used in studying radiation diffusion in gas 
nebulae. Even in the case of nebulae, however, complete frequency redistribu
tion of the radiation is usuallv assumed since some calculations have shown that 
the replacement of Eq. (11.1)by (11.5) does not lead to a big difference in the 
results (see Chapter V). 

Using the function p(v, V I ) ,  we can wr i t e  an expression for the emission 
coefficient E If it is assumed that pure radiation scattering occurs in the line, 
then we have" 

(11.6) 

When p(v, V I )  = Yj(u - V I ) ,  where 6 is the Dirac function, from (11.6) i t  fol- /134
lows that 

Ev= crv $ rv-	do (11.7)
Gr' 

i. e., the expression for E in the case of coherent radiation scattering.
V 

Substituting into (11.6) the expression for p(v, V I ) ,  given by Eq. (11.5), 
we obtain 

(11.8) 

The absorption coefficient for completely noncoherent scattering is deter
mined by this formula. 
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Below we will assume that completely noncoherent spectral line radiation 
scattering occurs in stellar atmospheres. 

2. Radiative transfer equation and its solution. After consideration of the 
processes, occurring during the elementary act of scattering, let u s  pass over 
to a determination of absorption line profiles. Here,  as already stated, we as
sume complete frequency redistribution of the radiation. 

For simplicity, we will assume fluorescence is absent. In this case we 
must take the radiative transfer equation in the form of (10.21), and the expres
sion for the emission coefficient-in the form of (11.8). 

We will introduce the continuous spectrum optical depth T with the aid of 
the relation dT = -01 

V
d r  (to simplify tF-2 notation we omit the subscript v on T). 

Then these equations assume the form 

(11.9) 

and 

(11.10) 

where p = cos 8, 77 = g /a! and (11.5) is used. v v u 

Previously we took the quantity B
V 
(T) in the form of a linear function of T;  	 /135-

however, now we will assume, for simplicity, it is constant and equal to B (T  ).v o 

From Eq. (11.9) it follows that the desired intensity of the radiation, com
ing from the atmosphere, is equal to 

(11.11) 

where 

(11.12) 

To formulate the integral equation, defining the function S(T), let us find 
the radiation intensity I from (11.9) and substitute it into (11.10). As a result 
we obtain V 

(11.13) 
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Equation (11.13) can be rewritten in the form 

00 

S(4  = 5 K( I 'F -z'i )S(.r/)cw+g(d, 
0 

where 

and 

Changing the order of integration in (11.15), we obtain 

where 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

/136 

(11.18) 

and v(x) = u
0 

if x > q 
VO 

+ 1, and q 
v(x)

+ 1 = x if x < q
V O  

+ 1(v
0 

is the central line 

frequency). 

Analogously we obtain 

(11.19) 

where 

(11.20) 

and the lower limit of the integration is determined the same as in (11.18). 

Equation (11.14) can be solved by the method discussed in Section 3. How
ever, the function s(7) itself is not of interest to us, but only the intensity of 
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the radiation coming from the atmosphere. This quantity can be found from the 
formulas given in Section 3 without determining the function S ( T )  beforehand. 
Here ,  it will be expressed by the function S ( 0 ,  x), defined by Eq. (3.20). 

From Eq. (11.19) we see that the free term of Eq. (11.14) comprises two 
parts:  a constant and a superposition of exponents. Therefore, denoting the so
lution of Eq. (11.14) by S ( T ,  x) for the free term e-xT, we obtain 

(11.21) 

Substituting (11.21) into (11.11) and utilizing Eq. (3.19), we find 

(11.22) 

The quantity S ( 0 ,  0) entering into Eq. (11.22) can be found with the aid of /137
relation (3.27).  Taking (11.17) into consideration, instead of this relation we 
have 

(11.23) 

Substituting Eq. (11.15)  here, we obtain 

(11.24) 

Therefore Eq. (11.22) assumes the form 

(11.25) 

The desired intensity of the radiation, coming from the atmosphere within 
a spectral line, is also given by Eq. (11.25). Outside the line the radiation 
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intensity in the given case is equal to Bv(To), Therefore for the quantity rv(p) 
we have 

(11.26) 

The function S(0, x), in terms of which the radiation intensity Iv (0, p) is 

expressed, is defined by Eq. (3.20).  Assuming x = l/z and S(0, x) = cp(z), in
stead of this equation we obtain 

(11.27) 

In the new notation the formula for rv(p)is written in the form 

(11.28) 

In order to calculate the quantity r,(p) from Eq. (11.28), the function q ( z )  /138-
must be determined from Eq. (11.27). This is easily done by numerical methods. 

Equation (11.28) gives the final expression for the quantity r
V 
(p), deter

mining the absorption line profile for completely noncoherent scattering. This 
formula was f irst  derived [12] by another method. Then it was extended to the 
case when the function B (T) is represented in the form of a linear function of 

V 
T and fluorescence is taken into consideration. Exact expressions for the quan
tity r

V 
( p )  in terms of the function q ( z )  have also been derived in the papers of 

Busbridge [13] and Ueno [14]. 

It should be mentioned again that the problem of the formation of absorption 
lines in the presence of noncoherent light scattering has been solved in many 
analyses by approximation method 9. 

3. Central intensities of absorption lines. Until now we have not concern
ed ourselves with a comparison of the-theory being discussed for the formation 
of stellar line spectra with the results of observations. Let us  do this now with 
respect to the central intensities of the absorption lines. 

Observations show that the central intensities a re  quite high even for very 
strong lines. Expressed as fractions of the continuous spectrum intensity, they 
amount to a few hundredths o r  tenths (i.e. , r fi: 0.01-0.1). Let us see to what 

V O  
values of r the theory discussed above leads. 

VO 
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Let us first consider the line profiles for noncoherent light scattering and 
in the absence of fluorescence. In this case the quantity r

V 
is determined by Eq. 

(10.37).  We see that the line profile depends on the quantity q
V' 

which is equal 
to 

(11 .29)  

where n is the number of absorbing atoms in 1 cm3 and k
V 

is the absorption co

efficient, calculated for  one atom. The quantity k
V 

can be assumed to be known, 
and the quantity n/a, can be determined from the line width (for example, by

V 
comparing the theoretical and observed distances from the line center for r = 

V 

= 1/2). This provides the possibility of finding the value of the quantity q at the 
' I ,  

line center. For  strong lines the q values turn out to be very large-of the or
6 "0

der of 10  . 
The following approximate value for the quantity r results from Eq. (10.37)

when 77 >> 1: V O  
" 0  

(11 .30)  

When 77 M 106 , Eq. (11 .30)  gives r F=: 10-3 . This value of r is much less  / 139 
" 0  " 0  " 0

than the values obtained from observations. 

As already stated, this discrepancy between theory and observations made 
i t  necessary to take fluorescence into consideration. In this case, Eq. (10 .52 )  

was derived for the quantity rv. For 77 ~ 1 06 and for y N 10-3 (this estimate 
"0

of the quantity y was made above), we have yq >> 1. Therefore from Eq. 
(10 .52)  we obtain the approximation VO 

rv, = QIT. ( 1 1 . 31) 

When y fi: and Q M 1, it follows from Eq. (11 .31)  that r e 0. 03. Thus, Eq. 
V O

(11 .31)  gives much higher values of r than Eq. (11.30) .  In other words, tak-
V O  


ing fluorescence into account drastically increases the theoretical value of the 
central line intensity. 

However, for Q = 1 the theoretical values of r are nevertheless smaller 
" 0

than the observed. For example, for the sodium D1 and D2 and the h 4227 A 
calcium lines in the solar spectrum the theoretical and observed values of r 

vn 
differ by a factor of 2-4. For the H and K lines of ionized calcium this discrgp
ancy is much greater since the value of y in this case is very small. In order 
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to bring theory into agreement with observations, i t  must be assumed that the 
hypothetical factor Q introduced above is considerably greater khan unity. The 
Sun, producing ionization of atoms from the ground state, should surpass the ra
diation intensity, given by Planck's formula, many times. However, as we will 
see in Chapter III, we have no basis for such an assumption. 

In view of what has been said, the question arises whether taking nonco
herent scattering into account can lead to higher theoretical values for the cen
tral absorption line intensities. To answer this question we must return to Eq. 
(11.28), which defines the quantity r,(p) for completely noncoherent scattering. 

One can show that the second term within the square brackets of Eq. (11.28) is 
smaller than the first 'by at least a factor of two. For the line center the coef
ficient in front of the brackets is close to unity (since z = p/(1 + 77 

V 
), and for 

very small z, as seen from Eq. (11.27), q(z) * 1). In the given case, therefore, 
we have the approximation 

(11.32) 

In evaluating the quantity rvOfrom Eq. (11.32), for the line absorption co

efficient let us take its usual expression, given by Eq. (8.17). Then we obtain /140 

(11.33) 

For a w10 -2 and 77 "10 6 , Eq. (11.33) gives r = l O  -2 . With coherent 
V O  V O  

scattering, however, we previously obtained r = 10-3 from Eq. (11.30). Thus, 
V O  

the central absorption line intensities can be much higher for noncoherent scat
tering than for coherent. 

The high values of rvo' 
given by Eq. (11.33), are explained by a frequency 

redistribution of the radiation within the line: in the outer layers of the atmo
sphere, absorption of the intense radiation occurs in the line wings followed by 
the emission of energy in the central portions of the line. 

As already stated, a formula has been derived for the quantity r ( p )  that 
V 

takes account of noncoherent scattering and fluorescence simultaneously (see 
[12]). For the quantity r this formula gives

VO 

(11.34) 

128 




We see that if the inequality 

(11.35) 

is satisfied, then the quantity r is caused primarily by frequency redistribu-
VO 


tion of radiation within the line. However, when this inequality is reversed, 
fluorescence plays the major role in  the formation of the central portions of the 
line. 

One can assume that the inequality (11.35) holds for  some lines of the solar 
spectrum. For these lines the value of the quantity rv, calculated from Eq. 

(11.34), will be greater than the value given by the Eq. (11.31) for Q = 1, i. e. , 
in this case theory can agree with observations. In order to verify this assump
tion, however, precise values of the parameters a, q and y must be found, 
which is difficult at the present time. VO 

It should be mentioned again that the central portions of the strong absorp
tion lines are formed in the outermost layers of the atmosphere. It is possible 
that for some lines these layers are the chromosphere. Since, however, the 
conditions in the chromosphere are very unusual (see Chapter 111), this must al
so  affect the central portions of the lines. 

4. Variation of line profiles over the solar disk. A good method for check- /141 
ing the theory of stellar line spectra is to study the variation of line profiles as 
one goes from the center of the solar disk to its edge. Moreover, such a study 
can provide some information on the structure of the solar atmosphere. 

We will now consider only the behavior of the far wings of strong lines. 
Just  as before, let  us assume that the ratio of the line absorption coefficient to 
the continuous spectrum absorption coefficient, denoted by 77 

V' 
is constant in the 

atmosphere Obviously, the quantity 1-r ( p )  in the line wings is proportional
V 

to 77,. Therefore i t  is convenient to characterize the behavior of the line wings 
over the solar disk by the quantity 

(11.36) 

Let us  determine the quantity C ( p )  for different line formation mechanisms. 
In the case of local thermodynamic equilibri,um we have, on the basis of Eq. (9.18), 

(11.37) 

To determine the quantity C ( p )  under the assumption of coherent light scat
tering we must make use of Eq. (10.72). The function cp

V
( p )  entering into this 
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formula, is determined by Eq. (10.67), and the quantity hv-by Eq. (10.63). For  

QV 
<< 1, from Eq. (10.67) i t  follows that 

(11.38) 

Therefore from Eq. (10.72) we obtain (for Q = 1): 

Under the assumption of completely noncoherent scattering, from Eq. 
(11.28) we obtain 

where the function q ( z )  is determined by Eq. (11.27). This formula applies to / 142 
the case pv* = 0 and y = 0; however, one can derive a more general expression 

- 1  

for the quantity C(p) (see 1121). 

The theoretical expressions that have been presented for the quantity C(p) 
can be compared with observational data. Such a comparison shows that the 
theory agrees best with observations when the assumption of noncoherent light 
scattering is made. Even in this case, however, the agreement between them 
is not complete. This is explained, apparently, by the fact that the quantity q 

Vis not actually constant in the atmosphere. 

Detailed observational data on the variation of the profiles of different 
lines over the solar disk are presented in Houtgast's paper [15]. In the inter
pretation of these data Houtgast f i r s t  made the assumption of completely nonco
herent light scattering in a spectral line. 

.12. Chemical Composition of~~ Stellar Atmospheres 

1. Equivalent line widths. One of the most important characteristics of 
an absorption line is i ts  equivalent width, i. e. , the width of an adjacent portion 
of the continuous spectrum having an energy equal to the energy absorbed in the 
line. The equivalent line width is defined by the formula 

.-
TY =: (I-rv)dv, (12.1) 

where r
V 

= HJH: (see Section 9). 

Substituting the theoretical expression for the quantity r into Eq. (12. l),
V 

we can obtain the relationship between the equivalent line width and the number 
of absorbing atoms. This relationship, plotted on a graph, is usually called the 
"curve of growth". With the aid of the curve of growth one can determine the 
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number of absorbing atoms from the measured equivalent line width. These de
terminations serve as the basis for finding the chemical composition of the stel
lar atmosphere. This represents a very important (but not the only) purpose of 
the curve of growth. 

An atmosphere model must be specified in order to calculate .the quantity 
W from Eq. (12.1) .  In the case of the Schwarzschild-Schuster model the quan
tity rv is defined by Eq. (10.19). Substituting (10.19)  into (12. l ) ,  we obtain a 
relationship between W and N. Strictly speaking, however, the quantities which 
are parameters in the expression for the absorption coefficient k must still en-

V 
ter into this relationship. If Eq. (8 .18)  is taken for k

V' 
then these parameters 

will be ko,AvD and a. Obviously, in the given case the equivalent line width 

depends on the product k
0

N and on the parameters Av,, and a, i. e.,  / 143 

1V == F1 (kdV, AVD, a). (12 .2 )  

In the Eddington model with the simplifying assumptions, the quantity r 
V 

is given by Eq. (10.37)  in which 77 
V = kVn/Cuv. In the given case we have 

(12 .3)  

for the equivalent line width. 

It is easy to see that the quantity n/a has the same physical meaning as 
V 

the quantity N, i. e . ,  i t  represents the number of absorbing atoms in a column 

with a 1cm 2 cross  section above the atmosphere. In fact we have 

(12 .4)  

But since the continuous spectrum optical depth T 
V 

of the base of the atmosphere 
is about unity, then the quantities n/a and N must be of the same order  of mag
nitude. V 

From what has been said i t  follows that the parameters ko, Av, and a 
must be known in order to determine the number of absorbing atoms with the 
aid of the curve of growth. In most cases, however, these parameters are 
poorly known, and therefore attempts are made to determi- e them by means of 
the curve of growth. This can be done because the stellar spectrum usually con
tains many lines of the given atom, i. e. , we have many relations of the type 
(12 .2 )  or  (12 .3)  in which the values of the quantity W are known from observa
tions. 
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Thus, a number of problems can be solved with the aid of the curve of 
growth. We will now enumerate some of them. 

1. The determination of the number of absorbing atoms N (or n/aV ), i. e.,  
the number of atoms in  states such that transitions from them give rise to a giv
en line. In this manner a value is arrived a t  for the number of atoms, of the el
ement being considered, in all states. The chemical composition of the atmo
sphere is found in this way. 

2. The determination of the number of atoms in different states (if lines, 
arising from different states, are observed in  the stellar spectrum). When these 
numbers are represented by the Boltzmann formula, the Ifexcitation temperature" 
of the atoms in the atmosphere is determined. 

3.  The determination of the Doppler half-width of the line, equal to 

0 
AvD= v O - ,  (12.5)

C 

where v is the average velocity of random atomic motion (thermal and turbulent), 
The value of the velocity v can be determined from this. 

4. The determination of the parameter a, which is given by Eq. (8.27). 
The role of collisions in radiation damping is thereby determined. 

5. The determination of the quantity ko, related to the Einstein sponta
neous transition coefficient Aki by Eq. (8.16). Expressing the coefficient Aki in 

terms of the oscillator strength f, we obtain 

(12.6) 

where m is the electron mass  and e is its  charge. Consequently, knowing ko, 
one can determine the oscillator strength for a given line. 

Below we will derive theoretical curves of growth in explicit form and we 
will report the results of their application to the determination of the chemical 
composition of stellar atmospheres. The problems of determining other atmo
sphere parameters with the aid of the curve of growth will be considered briefly 
in the following section. A more detailed discussion of these problems can be 
found in the monographs [7] and 181 4 ted  above. 

2. Curve of growth for the Schwarzschild+khuster model. In order to de
termine the dependence of the equivalent line width on the number of absorbing 
atoms in the case of the Schwarzschild-Schuster model, Eq. (10.19) must be 
substituted into Eq. (12.1). After doing this, we obtain 

kVNTV= j 
1 +k,N dv-

(12 .7)  

-/144 
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Let us  take Eq. (8.18) for the absorption coefficient kv: Since the integral 
of (12.7) is not stated in the general form, let us consider three special cases 
corresponding to three portions of the curve of growth (this was first done by 
Menzel [16]). 

1. Let N be small so  that kvN << 1 for all frequencies. In this case Eq. 
(12.7) can be rewritten in the form 

TY=N $ kv dv. 12.8) 

Substituting Eq. (8.18) here, we obtain 

(12.9) 

This formula is valid only for very weak lines. 

2. Let N be large so that k N >> 1, but kvN 1 in those portions of the / 145 
V O

line where k is determined by radiation dam,-.;ig. In the given case, Eq. (8.24)
V 

can be taken for kv. Substituting i t  into Eq. (12.7), we have 

(12.10) 

An approximate calculation of the integral yields 

vou ___
IV=2---k&’. (12.11)C 


Let us note that Eq. (12.11) can also be derived from the following con
siderations. We find the distance Au, from the line center, at which r = 1/2. 
According to Eq. (10.19), at this distance we must have kvN = 1 or 

(12.12) 

From this we obtain 

(12.13) 

Since W = 2 A u  approximately, we again arrive at Eq. (12.11). 
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3. Finally, let N be so large that the inequality kVN >> 1is satisfied even 
in those portions of the line, far from the center, where k is determined by ra-

V 
diation damping. Obviously, in this case Eq. (8.25) can be used for k for com-

V 
puting the integral of (12.7) over the entire extent. Substituting (8.25) into (12.7), 
we obtain 

(12.14) 

or, after integration, 
YOU -T.'v=51'/' -
C 

IQkoN. (12.15) 

Summarizing the results obtained, we can state that the equivalent line 
width W increases with an increase in the number of absorbing atoms, first as / 146 

I_

N, then approximately as and, finally, as m. 
The relationship between W and N is usually changed somewhat for prac

tical use. First of all, a conversion is made from equivalent width W in terms 
V 

of frequency (we have designated this simply as W in the foregoing paragraphs) 
to equivalent width in terms of wavelength WA. These quantities a re  interre
lated by the relation 

(12.16) 

Further, a change is made from the number of absorbing atoms N to the quantity 

xo = kdv, (12.17) 

representing, approximately, the optical depth of the atmosphere at  the line cen
ter (since k differs little from ko when a << 1).

V 

Taking into consideration what has been said, the formulas derived above 
can be rewritten in the following form: 

for small Xo 

(12.18) 

for large Xo 
F'VA u -1 =2 --7/ln xo, 

(12.19)C 
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for  very large Xo 

(12.20) 

Instead of the last formula we can also write 

(12.21) 

where I' is the damping constant (caused both by radiation damping and collision
al damping). Here, we have made use of the relation 

(12.22) 

resulting from the definition of a given by Eq, (8.27). 

A s  already stated, the curve representing the dependence of W on N (or 
In Wa/h on In Xo) is called the curve of growth. Both the formulas (12.18)

(12.20) presented above, as well as the results of a numerical determination of 
the integral of (12.7) for  intermediate values of Xo, are used for plotting the 
curves of growth. 

All the curves of growth comprise a family, depending on two parameters: 
the average velocity v of random atomic motion and the damping constant I' (or 
the quantity a). 

3. Curve of growth for Eddington model. To derive the dependence of the 
equivalent line width on the-number of absorbing atoms in the case of the Edding
ton model we must take Eq. (10.37) for r

V 
[or the more general expression 

(10.52)l. Substituting this expression into Eq. (12.7), one can obtain the depend
ence of W on Iron/@

V' 
We will not carry out the calculations, but will only pre

sent their results. It turns out that the equivalent line width W first increases 
as kon/av, then as 4; kon/a,

V 
and, finally, as &Tu.In other words, the 

curve of growth in the case of the Eddington model has approximately the same 
form as in  the case of the Schwarzschild-Schuster model. Let us remember 
that the quantity n/a

V 
is analogous to the quantity N in its physical meaning. 

Using the exact expression for the quantity r
V' 

given by Eq. (10.72), we 
can obtain the exact curve of growth for the Eddington model. For simplicity 
let us  assume that fluorescence is absent, i. e. ,  y = 0. In such a case Eq. (10.72) 
assumes the form 

12.23 
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where 7 = kvn/cYv, the function (pv(p) is defined by Eq. (10.67) and (Y v l  is its 
f i rs t  moment. 

The line profile a t  an angular distance of arccos p from the disk center is 
determined by Eq. (12.23). With the aid of this formula one can obtain the follow
ing expression for the quantity r

V Y  which determines the line profile in the total 
stellar spectrum: 

where av2is the second moment of the function cp
V 

( p ) .  

Substitution of Eq. (12.23) or  (12.24) into Eq. (12.7) and carrying out the -./148
integration should give the desired curve of growth. This integration was done 
numerically in Wruble's paper [171, who presented his results in the form of 
tables and graphs. 

One of the curves of growth obtained by Wrubel is given in Fig. 12. Along
the abscissa axis is plotted the quantity qo= kon/av, and along the ordinate axis-
the quantity WAc/Av. At high q0 values the curve branches out into a series of 
curves, corresponding to different values of the parameter a. 

Figure 12. 

The curve of growth, depicted in Fig. 12, refers to the case when p * = 
V 

=3/2. Let us remember that pv* = B v ?CY v, where pv is defined by Eq. (6 .7) .  
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Consequently, the quantity pv*, and with it the curve of growth, can vary mark

edly in passing from one portion of the spectrum to another. 

4. Plotting of curves of growth from observational data. The theoretical 
curves of growth depend on a number of parameters (ko,a, v), which are not 

accurately known beforehand. Therefore the observed equivalent line widths 
must be used to determine these parameters. To this end, the empirical curve 
of growth is plotted for a given star from the lines of the atom of interest. The 
values of the parameters cited above are  determined by comparing this curve /149 
with the theoretical curve of growth. 

The possibility of plotting the curve of growth from observational data is 
based on the presence of multiplets in the stellar spectrum. For multiplet lines 
having a common lower level the number N is the same, and the oscillator 
strengths are often known. Therefore for these lines the values of the quantity 
lg Xo, which according to Eqs. (12.17)and (12.6)is equal to 

(12.25) 


differ from each other only by an unknown constant term. This circumstance 
makes i t  possible to plot, from the observed equivalent widths of the lines en
tering into the multiplets, a portion of the curve of growth with, however, an 
unknown zero point on the abscissa axis. Corresponding portions of the curve 
of growth can also be plotted from the lines of other multiplets. Then the total 
curve of growth can be determined by shifting the portions of the curves of growth, 
that have been obtained, along the abscissa axis to achieve agreement among 
them. The curve of growth, plotted by D. Kulievfrom the Fe I lines (points), Ca 
Ca I (crosses)and Na I (circles) in the spectrum of o! Perseus, is given in Fig. 
13 as  an example. 

WIsx 
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A comparison of the empirical curves of growth with the family of theoret- /150-
ical curves provides the possibility of selecting that one of them which most near
ly corresponds to the observations. In this way the values of the parameters v 
and a (or I?) are determined for the atoms being considered in the atmosphere of 
a given star. The number of absorbing atoms N can also be determined from the 
curve of growth obtained in this manner. 

A study of stellar atmospheres with the aid of curves of growth leads to 
very interesting results. Let us point out, for example, that for supergiant s ta rs  
the values of the parameter v are often several times greater than the average 
thermal velocities of the atoms. This is explained by the turbulent motions in 
the atmospheres of stars (Section 13). 

In the case of dwarf stars the values of the parameter I' found from obser
vations are many times larger (in the case of the sun, for example, 5-10 fold) 
than the corresponding theoretical values, determined with only radiation damp
ing taken into account. This means that collisional damping also plays a large 
role in stellar atmospheres. The large value of I'for dwarf stars is explained 
by the relatively high density of their atmospheres. 

Many authors have investigated the atmospheres of the Sun and stars with 
the aid of the curves of growth. 0. A. Mel'nikov and his co-workers have done 
a great deal of work in this field. 

5. Amounts of different atoms in the atmospheres. The major purpose of 
the curve of growth is its use for determining the chemical composition of stel
lar atmospheres. From the equivalent line width the curve of growth gives the 
number of absorbing atoms, i. e. , the number of atoms in the lower state for a 
given line. In most cases this state is excited. In order to convert to the num
ber  of atoms in the ground state, the Boltzmann formula is usually used. It of
ten happens that lines, arising from excited states of the neutral atom, are ob
served in the stellar spectrum; but most atoms of a given element a re  in an ion
ized state (or vice versa). In such a case the Saha ionization formula must also 
be used for finding the total number of atoms of this element. The free electron 
density, entering into this formula, must be determined beforehand by one of 
the methods described in the following paragraph. 

The method given for determining the chemical composition of stellar at
mospheres is quite simple and is often used in practice. It must, however, be 
borne in mind that it is associated with two errors.  The f i rs t  of these arises 
because of the deviation of the atomic state distribution from the distribution 
given by the Boltzmann and Saha formulas. The source of the other e r ro r  is 
the use of the mean temperature and electron density values for the entire at- /151
mosphere, whereas these quantities vary considerably in the atmosphere. 

For these reasons, at the present time the determination of the chemical 
composition of stellar atmospheres with the aid of the curve of growth is con
sidered to be only a f i rs t  approximation. In subsequent approximations (with 
the aim of eliminating the second of the e r rors  cited) stellar photosphere model 
calculations, made to be applicable to a given s tar  (see Section 6 ) ,  are used. 
The results of such calculations give the temperature and density distribution 
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in the surface layers of the star. This makes it possible to calculate, more or 
less accurately, the profile of any line of the element being considered for dif
ferent assumptions concerning its content. The amount of this element in the 
stellar atmosphere is determined by a comparison of the calculated and observed 
equivalent line widths . 

Special formulas have been derived for  calculating the profiles and equiva
lent widths of absorption lines with the variation of the physical conditions with 
depth taken into consideration. The weighting function method, discussed in Sec
tion 10, has been extended for this. The formulas proposed by Pecker I181 are  
widely used in practice. 

The chemical composition of the atmospheres of different stars has been 
determined in many investigations. Let us now introduce some results taken 
from Aller 's  paper [81. 

Information on the chemical composition of the Sun's atmospher'e is con
tained in Table 13. Here, the total concentration of the atoms of a given element 
is denoted by n. Values of lg n a re  given in the table, with lg n = 12 being arbi
trarily adopted for hydrogen. 

TABLE 13. CHEMICAL COMPOSITION OF THE 
SUN'S ATMOSPHERE 

-

I 
- .-

Ele-I ment 

7.30 

4.70 
6,i5 

2,82 
4,68 
3,70

5,36 
4.90 
6,57 
4,64 
5,91 

J Y  

Ele
ment 

cu 
Zn 
Ga 
Ge 
R b  
Sr 
Y 

Zr 
A'b 
nro 
Ru 

I-

-

k n 

5,04 
4.40 
2,36 
3,29 
2,48 
2.60 
2,25 
2,23 
1.95 
I ,90 
1.43 

_. 
kle
ment 

~~ 

Rh 
Pd 

3 

In 

Sn 

Sb 
Ba 
Yb 
Pb 

0.78 
i ,21
o,i4 
I,46 
i , I 6  
4 , s  
i ,94 
2 , lO 
I,53 
i ,33 

-

Commas represent decimal points. 

Table 13 contains no information on the number of helium atoms in the so
lar atmosphere because of the absence of helium absorption lines in the visible 
portion of the solar spectrum. Only helium lines arising from excited states 
can be observed in this portion of the spectrum. The helium excitation poten
tial is, however, very high so that a t  the relatively low temperature of the Sun 
there are few helium atoms in the excited states and they do not give r ise  to 
pronounced absorption lines. Intense helium absorption lines are present only 
in the spectra of hot stars (B and 0 classes). 

However, as we will see below, helium emission lines are observed in the 
spectrum of the solar chromosphere. From the ratio of the intensities of the 
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helium and hydrogen emission lines it could be determined that the number of 
helium atoms amounts to about 0.2 of the number of hydrogen atoms. 

Thus, hydrogen is the most abundant element in the solar atmosphere. He-. 
lium is the next in abundance. Then come the light elements: carbon, nitrogen, 
oxygen. The number of metal atoms, taken together, amounts to about one ten-
thousandth of the number of hydrogen atoms. 

Data on the chemical composition (more precisely, values of lg n) of the 
atmospheres of class B stars are given in Table 14. This table, like the preced
ing one, is taken from the cited paper of Aller, who used the published results of 
a number of authors. These results are obtained partly with the aid of the curves 
of growth and partly with the aid of photosphere models. Two results are pre
sented for the star T Scorpion. The discrepancy between them is caused both by 
the differences in the observational data and by differences in the methods used 
to determine the chemical composition. 

TABLE 14. CHEMICAL COMPOSITION OF THE 
ATMOSPHERES O F  CLASS B STARS 

_ - 
11 12,OO 12.00 12.00 12,oo-He 31.17 11,31 11.23 
c 8,53 8,26 8,37 7.70 
:i 8.01 8,31 8,57 8,26 
0 8,63 9,03 9.12 8,G3 
se 8,73 8,61 8,72 8,86 
3Iq 7,95 7.76 7.73 8.30 
AI .5,76 6,78 S i 5 8  G;40 

I1 si 7,03 7,96 7.95 I 7,63 
Commas represent decimal points. 

From Tables 13 and 14 it is seen that the chemical composition of stellar /153-
atmospheres does not differ, in general features, from the chemical composi
tion of the Sun's atmosphere. As we will learn later, the chemical composition 
of gaseous nebulae is also approximately the same. The conclusion concerning 
the common chemical composition of different types of stars and nebulae has 
immense value for astrophysics. 

The problem of the appearance of real differences in the chemical compo
sition of stellar atmospheres is of considerable interest. From the observa
tional data i t  follows that stars with approximately the same surface tempera
ture sometimes have vastly different spectra. As an example one can cite the 
Wolf-Rayet type of star, the spectra of which a re  divided quite markedly into 
two series: nitrogen and carbon. Stars of the later classes, whose spectra a re  
divided into oxygen and carbon branches (the first  of these is characterized by 
Ti0  bands, and the second-by C2, CN and CH bands), can serve as another ex

ample. The existence of stars with very weak hydrogen spectral lines ("hydrogen
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poor starstt)and stars with very strong lines of some metals ("metallic stars") 
has also been established by observations. Apparently, in most of these cases 
the spectral anomalies are caused by peculiarities in the excitation and ioniza
tion of atoms in stellar atmospheres. 

13. Physical Conditions in Atmospheres~ ~~ 

1. Atom excitation and ionization. As  is known, in the presence of ther
modynamic equilibrium the degree of atom excitation and ionization is determin
ed by the Boltzmann and Saha formulas, Strictly speaking, thermodynamic equi
librium does not exist in stellar atmospheres. Even in this case, however, the 
Boltzmann and Saha formulas a re  still used as a f i rs t  approximation. Therefore 
in considering the physical conditions in stellar atmospheres we must f i rs t  of all 
discuss these formulas. 

Let Ei be the energy of the i-th atomic level and gi be its statistical weight 

(or the level multiplicity). Let us denote by n. the number of atoms with energy
1 


Ei in 1 em 3 in the presence of thermodynamic equilibrium. The fundamental 
formula of statistical physics gives 

(13.1) 


where C is some constant. 

From Eq. (13.1)we obtain 

(13.2) 


where E. 
1 

= -xi. The quantity x. represents the ionization energy from the i-th
1 

level, and the quantity x1 - xi is the excitation energy of this level. Equation 
(13.2)is usually called the Boltzmann formula. 

Equation (13.1)can also be applied to states with positive energies in 
which the electron is not bound to the atom. This provides the possibility of de
termining the ratio of the number of ions to the number of neutral atoms. The 
formula, defining this ratio (the so-called Saha formula), has the form 

(13.3) 


where n + is the number of ionized atoms in the ground state in 1cm 3 , g + is the 
3

statistical weight of this state, n is the number of free electrons in 1 cm .e 
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Analogous formulas also serve for determining the number of atoms in sub
sequent ionization stages. In particular, the ratio of the number of doubly ion
ized atoms to the number of singly ionized atoms is given by the formula 

(13.4) 

++ 3where n is the number of doubly ionized atoms in the ground state in 1cm , 
g++ is the statistical weight of this state, xIt is the ionization energy of a singly 
ionized atom from. the ground state. 

A s  an example, we will apply the formulas that have been presented to the 

hydrogen atom. In this case gi = 2i2 and xi = xl/i 2 . Therefore Eq. (13.2) as
sumes the form 

(13.5) 

In particular, for the second level we have 

(13.6) 

From Eq. (13.6) it follows that for the temperatures, in thousands of de-
L_/155 

grees, prevailing in stellar atmospheres an overwhelming majority of the hy
drogen atoms are  in the ground state. However, with an increase in tempera
ture the degree of atomic excitation increases rapidly. 

From Eq. (13.5) it is also seen how the number of excited atoms varies 
with an increase in the level number i. If the temperature is not very high, then 
the quantity ni/n 1decreases at  first with an increase in i, and tl sn  increases, 

with it increasing approximately proportional to i2 at very high i. From this i t  
follows that if all atomic levels were realizable, the total number of atoms in 
excited states would be infinite. In reality, however, because of perturbations 
caused by foreign particles the high atomic levels are not attainable, Therefore 
the number of atoms in all excited states is usually much less than the number 
of atoms in the ground state. 

When the ionization formula (13.3) is applied to the hydrogen atom, we 
+

must set  g = 1, g1 = 2, x1/k = 157,200. As a result we obtain 

(13.7) 
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The degree of ionization depends not only on the temperature T but also on the 
density of free electrons ne. Since, however, the quantity ne is relatively small 

in stellar atmospheres, the degree of ionization can be high even at not very high
12temperatures. For  example, assuming ne = 10 , from Eq. (13.7) we find that 

at T M 10,000" the quantity n"/n 1for hydrogen will already be of the order of 
300. 

In practical calculations the ionization formula (13.3) is often used in the 
form 

(13.8) 

where pe is the electron pressure, equal to 

p e  -- n&T. (13.9) 

Taking the logarithm, instead of (13.8) we obtain 

2b*log pe -= --I_ nf 5040 
xi f 2.5 1OgT-0.45 4- lg I_. 

(13.10) 
nt T gl 

Here ,  the electron pressure pe is expressed in bars  ( 1bar  = 1dyne/cm 2 ), and @! 
the ionization energy x1is in electron volts. An electron golt is the energy 

which an electron acquires in traversing a potential difference of 1volt (1e V  = 

= 1.60- 10 -12 erg). 

Values of the ionization energy of neutral and singly ionized atoms are 
listed in Table 15. From the table i t  is seen that metals (Na, Ca, Fe, etc.) 
possess the lowest ionization energies from neutral atoms. In stellar atmos
pheres they are already ionized a t  temperatures of order of 5000". With an in
crease in temperature, hydrogen undergoes ionization. The highest tempera
ture is required for  helium ionization. 

As  already stated, the Boltzmann and Saha formulas can be applied to stel
lar atmospheres as a first approximation. In those cases when more precise

+ 
1 1and n /n  

1' 
the specificformulas are required to determine the quantities n./n 


processes of atomic excitation and ionization due to the effects of radiation and 

due to the effect of collisions (as well as the reverse processes), must be ex

amined. In such cases Eqs. (13.2) and (13.3) with certain correction factors / 157 

are used to determine the degree of atomic excitation and ionization. For stel

lar atmospheres these factors usually are not greatly different from unity. For  

many other astrophysical objects, however, the deviation of these factors from 

unity is very large. Gaseous nebulae, which we will consider later (see Section 

23 and 24), can serve as an example. 
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TABLE 15. TO BE TRANSLATED (2 lines) 
XMZXMWWUL: 

~- ~ _ _-
Ele- Ele

ment XI X,' ment I x, XI' ment XI  Xl* 

__ -. 

H 13,60 A 
He 2; ~ 5s 54,4 K 
Li 5,39 76.6 Ca 
Be 9,31 18,2 sc 
B 8.30 25,i Ti 
C U ,26 24,4 V 
N 14,51 29,6 Cr 
0 13,61 35,I 31n 
F 17,a 35,O Fe 
Se ?1,55 41,i co 
S a  5,14 47,3 N i  
3Ig 7,c4 15,O cu 
-41 5,98 18,8 Zn 
Si 8,15 16,3 Ga 
P 10.55 19,6 G e  
S 10,36 23,4 AS 
CI 13,01 23,8 Se 

_ - .- .--

Co---mas repre 

. ~~ 

15,75 27.6 Br %1,84 21.6 
4,34 3 1 3  Kr 14,OO 24.6 
6,1i 11,9 Rb 4,18 27,4
6,56 i2,8 Sr 5,69 11,o
6,83 13;6 Y 6,6 12,3 
6.. 74 14,6 Zr 6,95 14,O 
6,76 16,5 Nb 6,77 13.5 
7,43 15,6 nf0 7,18 15.2 
7,90 16,2 Tc 7.45 15 
7,8G 17,O Ru 7,5 16.4 
7,63 18,2 R h  797 18.1 
7,72 20,3 Pd 8,33 19;9
9,39 18,O 7,57 22.0 
6,00 20,5 3 8,99 16.9 
7,88 15,9 In 5,78 18,9 
9,85 20,2 Sn 7,33 14,6
9,75 21,4 
- - . .- __ 

it decimal points. 

2. Density of free ~~electrons. The density of free electrons ne must be 
known in order to determine the degree of atom ionization from Eq. (13.3).
This quantity depends on the depth and must be determined on the basis of a 
stellar photosphere model calculation (see Section 6 ) .  In some cases, however, 
only the average value of the free electron density in the atmosphere is of inter
est. This quantity, which we will denote by ne, is usually determined by one of 
two methods. 

The first method can be used when lines of the same atom in different 
stages of ionization are observed in the stellar spectrum. Let us assume, for 
example, that the lines of neutral and singly ionized atoms a r e  observed. In 
such a case one can, with the aid of the curve of growth and Boltzmann's formu

+
la, find the numbers n1 and n . Then the desired quantity ne is determined from 

the ionization formula. 
+ +In the Sun's spectrum, Ca and Ca lines, as well as Sr  and Sr , are pres

ent. Application of the above-mentioned method in both cases gives approximate

ly the same result, namely, ne cmm3. 

The second method of determining the quantity ne is based on counting the 
number of hydrogen Balmer series lines observed in the stellar spectrum. As 
already stated, the high atomic levels a re  not attainable in real  life because of 
the effect of foreign particles. Therefore an upper limit should exist for the 
number of lines observed. Let us denote the number of the last attainable level 
by i and the orbital radius corresponding to it-by ri. Let us also denote the 
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mean distance between particles by r0' Obviously, r.
1 

< r0' But for the hydro
n 

.& gen atom ri = r11 , where r1 is the radius of the first  Bohr orbit (r1 = 0.53

cm), and the average distance between the particles is equal to 

(13.11) 


where n is the particle concentration. Therefore we obtain 

(13.12) 


or / 158 

Ig XI < 24.21 - 6 lg i. (13.13) 

The inequality (13.13)allows one to estimate the upper limit for the particle con
centration n (including the free electron density ne) from the observed number 
of Balmer lines. 

For a sufficiently large number of charged particles (ions and free elec
trons), however, they produce a perturbing influence on the atom so that the 
number of attainable levels is reduced even further. The charged particles, be
cause of the Stark effect, also produce a broadening of the lines. In this situa
tion the high terms of the Balmer ser ies  merge with each other and they cannot 
be distinguished from the continuum. With the merging of lines taken into con
sideration, Inglis and Teller derived the following formula for determining the 
charged particle density n in terms of the number of the upper level of the last 
observable Balmer line: 

lg rt = 23.26 -7.5 Ig i. (13.14) 

Here, for low temperatures (T < 105/i) n should be construed as the density of -
ions and free electrons, and for high temperatures (T >105/i)-as the density of 
ions only. If one can assume that the ions and free electrons a re  formed only 
through the ionization of hydrogen atoms, then in the first  case n = 2; e' and in 
the second n = ne' 

The methods described for determining the mean density of free electrons 
in stellar atmospheres are not distinguished by high accuracy (if only because 
of the uncertainty in the concept of the quantity ne itself. In practice, however, 

these methods are used very frequently for a rough estimate of ne' In particular, 

it is easy to distinguish dwarf stars from giant s ta rs  by the number of observable 
Balmer lines in the stellar spectra. In the atmospheres of dwarfs the particle 
density is much greater than in the atmospheres of giants, and this means that 
the quantity i must be smaller. An especially small number of observable lines 
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should be present in the spectra of white dwarfs, which is in complete agreement 
with observations. 

3.  Turbulence in atmospheres. The study of stellar atmospheres by the 
curve of growth method has shown that for many stars the values of the param
eter v are somewhat greater than the average thermal velocity of the atoms. 
Thus, the idea emerged that another type of random gas movement is present in 
stellar atmospheres in addition to the thermal motion. This motion was called 
f'turbulent" (although it can be distinguished from turbulent motion in the aero
dynamic sense). Thus, the total velocity of random motion of the gas atoms in /159 
a stellar atmosphere is defined by the formula 

(13 .15)  

where v0 is the average velocity of thermal motion, equal to 

(13 .16)  

and vt is the turbulent motion velocity. 

Especially high turbulent velocities have been found in supergiant stars. 
For example, a s  determined by Struve, in the atmosphere of E Auriga v

t 
= 

= 20 km/sec, and in the atmosphere of 17 Leporis vt = 67 km/sec. For com

parison, the average thermal velocities of metal atoms in stellar atmospheres 
a re  about 1km/sec. 

Because of the turbulent motions in stellar atmospheres a change also oc
curs in the absorption line profiles, namely-a line broadening. In the spectra 
of some supergiants the weak lines turn out to be broad and fine, and the strong 
lines a re  broadened in their centers but stripped of their wings (this is how they 
are  distinguished from the lines of dwarf s tar  spectra). 

For a number of stars, however, large discrepancies a re  observed be
tween the turbulence velocities, determined from the equivalent widths, (i.e. , 
from the curve of growth), and from the absorption line half-widths. For ex
ample, in a study of the 6 Canis Majoris star a value of vt = 5 km/sec was de

rived from the equivalent width and a value of v = 30 km/sec from the half
t 

width. To explain these discrepancies i t  has been proposed that the turbulence 
elements can have different sizes within stellar atmospheres. If the linear di
mensions of the turbulence elements are small compared with the thickness of 
the atmosphere, then the turbulence motion exerts absolutely the same effect 
on the absorption line as thermal motions. In this case the turbulence veloci
ties found from the equivalent widths and from the absorption line half-widths 
should not be different. If, however, the linear dimensions of the turbulent el
ements a re  greater than the atmosphere thickness, then the turbulent motion 
should broaden the absorption lines but it cannot increase their equivalent wid
ths. In this case the effect of turbulence on the absorption line is similar to 
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the effect of star rotation. According to this hypothesis, the turbulent motion in 
the atmosphere of 6 Canis Majoris approaches that of the second case, 

A detailed study of turbulence in stellar atmospheres has been made by 0. 
Struve and S. S. Huang. In particular, they were concerned with determining the 
size of the turbulence elements on the basis of the relationship between the equi- /160
valent width and half-width of an absorption line (see, for  example, [ 8 ] ) .  

4. Rotation of stars.  The rotation of a s ta r  about its own axis can be as
certained from the form of the spectrum. If a star is rotating, then the portion 
of the disk, receding from us, gives absorption lines shifted toward the red end 
of the spectrum, and the portion of the disk, approaching us, gives lines shifted 
toward the ultraviolet. On the whole, a rotating star gives an absorption line that 
is broadened with respect to the absorption line in the spectrum of a stationary 
star. Star rotation obviously causes a broadening of all the lines. Therefore the 
rotation effect is easy to differentiate from, for example, the Stark effect, which 
causes a noticeable broadening of only those lines which a re  especially sensitive 
to an electric field. 

Let us f i rs t  consider the problem of the effect of rotation on the absorption 
line profile. Let the rotational velocity of the s ta r  at  the equator to equal to v, 

and let the axis of rotation form an angle with the 
line of sight. Let us take a rectangular coordinate 
system x, y, z with its origin at  the center of the 
star,  with the z-axis directed toward the observer, 
and with the y-axis lying in the plane passing through 
the axis of rotation and the line of sight (Fig. 14). 
To simplify the notation, we will assume that the 

server -<.zto-& star radius is equal to unity. 

We will  denote by I( x, y, v - v0) the intensity 

of the radiation coming from a point with coordinates 
‘i x, y on the disk of a nonrotating star within a line at 

Figure 14. a distance of v - v0 from its center. If the star is 
rotating, then in the expression for the radiation in

tensity one must substitute, instead of vo, the central frequency for the point be

ing considered, which is equal to vo + vovz/c, where vz is the radial velocity of 

this point. It is easy to derive that 

uz = -xu sin i. (13.17) 

Therefore the intensity of the radiation, coming from the point with coordinates 
V x sin i) at  the frex, y on the rotating stellar disk, will  be I(x, y, I, - vO + ’ / O C

quency v. 

Furthermore, let us denote the intensity of the continuous spectrum radi
ation, coming from the point with the coordinates x, y on the stellar disk, by 
Io(x, y). Then the ratio of the energy, emitted by the star a t  frequency E, within 
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the line, to the energy, emitted in the continuous spectrum by the star, will be 
equal to 

(13.18) 

-1 0 

The profile of the absorption line in the spectrum of the rotating star is also de
fined by this formula. 

With an increase in the rotational velocity of the star, the absorption line 
width increases. At  the same time, however, the line becomes shallower. This 
circumstance is related to the fact that the equivalent line width does not change: 
at any rotational velocity it is equal to the equivalent line width in the spectrum 
of the nonrotating star. This result, which is understandable from physical con
siderations, is also easy to derive from Eq. (13.18). 

To simplify Eq. (13.18) let  us make the assumption that the absorption line 
profile is the same in all parts of the disk of the nonrotating star, i. e . ,  

Substituting (13.19) into (13.18), we obtain 

(13.20) 

where 

(13.21) 

Let us express the distance from the line center at the maximum Doppler 
widths, caused by rotation, i. e. , let us set  

v -vo C (13.22)t=-----
vg vsini' 

-/161 
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and instead of r ( v  - v0) and ?(v - v0) we will simply write r ( t )  and ?(t). Then, in- /162 
stead of Eq. (13.20) we obtain 

-I-i 
‘ F ( t ) =  r ( t - Z ) . 4 ( 2 ) d ~ .  (13.23) 

-i 


Equation (13.23) makes it possible to calculate the line profile in the spec
trum of a rotating star from the line profile in  the spectrum of a nonrotating star 
if the quantity A(x) is known. In order to determine this quantity, i t  is necessary 
to know the continuous spectrum radiation intensity distribution over the stellar 
disk. Let us adopt, as usual, 

Io =C ( i +  B C O S 6 ) ,  (13.24) 

where 9 is the angular distance from the center of the disk. Since sin ?P = x 2 
+y 

2 ,
then instead of (13.24) we have 

(13.25) 

Substituting (13.25) into (13.21) a,nd performing the integration, we obtain 

(13.26) 

It is obvious that the quantity A(x) defines the line profile in the spectrum 
of a rotating s ta r  if the line width in the spectrum of a nonrotating star is very 
small, If, however, this width is not small (i.e. , compared with the width of 
the rotation-broadened line), then Eqs. (13.23) and (13.26) must be used to de
termine the line profile in the spectrum of the rotating star. 

The formulas that have been presented allow one to determine the star ro
tation velocity (more precisely, the quantity v sin i) from the line profiles. To 
do this, one takes the line profile in the spectrum of a nonrotating s ta r  of the 
spectral class of interest and constructs, with the aid of Eq. (13.23), the rota
tion-broadened line profiles for different values of the parameter v sin i. A L E  
comparison of these profiles with the line profile in the spectrum of the given 
s t a r  permits one to determine the desired vaiue of v sin i. 

The profile of the helium 4026 line in the spectrum of the nonrotating 
s ta r  i Hercules, as well as the rotation-distorted line profiles found with Eq. 
(13.23),  are shown in Fig. 15 as an example. It should be noted that a reliable 
determination of the quantity v sin i is possible only when it attains a value of 
the order of several tens of kilometers per  second. Otherwise, i t  is difficult 
to isolate the rotation effect from other effects that influence the line profile. 
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The values of v sin i have been determined for many stars by this method. 
It was found that only stars of the early spectral classes-0, ByA and early F

possess a high rotational velocity. 
Type Be stars rotate the fastest 

LO -10 -5 0 5 loli 	 (with velocities up to 500-600 km/ 
/see). The rotational velocities 
of types B and A stars amount to

03 - 400-500 km/sec, and of type F 
a8 - stars-to 200-300 km/sec. Stars 

of classes later than F5 do not ex
07. 	 hibit a pronounced rotation. Con

version from v sin i values to ro
~@ tational velocities v is accomplish-

-. - ~ _ _ _ . _ _ . _He4025d 	 ed  statistically with the assumption 
that the axis of rotation is uniformly 
distributed in direction.Figure 15. 

Fast rotation of a s tar  exerts 
a significant effect on the physical 

conditions in the stellar atmosphere since centrifugal force is added to the forces 
acting in the atmosphere. Since the centrifugal force depends on the latitude, 
then the physical conditions in the atmosphere of a rotating s tar  also depend on 
the latitude. In particular, the temperature and density distribution in the at
mosphere must be different at different latitudes. Moreover, there must also 
be differences in the degree of atomic excitation and ionization, and, conse
quently, in the form of the spectrum also. Calculations show that the spectra, 
forming at the equator and at the pole, can correspond to very different spectral 
subclasses. And since we observe the spectrum of the entire star, it must ex
hibit the features of each subclass. The relative role of these features obvious
ly depends on the inclination angle of the axis of rotation to the line of sight.
The observed spectra of some stars actually exhibit features of different sub
classes. To explain such spectra one can assume that in these cases we are  
dealing with stars that are rotating rapidly and whose polar regions a re  turned 
toward us (otherwise the relative role of the spectra of the polar regions will  
be small). 

For each star there exists a critical rotational velocity vo at the equator 

at which the gravitational force is balanced by the centrifugal force. This ve
locity is defined by the formula 

V;?=G-	 M 
R' (13.27) 

where M is the stellar mass, R is its radius and G is the gravitational constant. 
As an example let us take a class B5 star for which M = 6Mb and R = 4Ro. For 
this s tar  Eq. (13.27) gives vc = 530 km/sec. 

If the rotational velocity of the star a t  the equator exceeds the velocity v
C Y  

then an outflow of material will occur from the equatorial region, leading to the 
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formation of a gaseous ring rotating around the star. Class Be s tars ,  in the 
opinion of Struve, have such rings. This opinion is corroborated by the fact that 
the rotational velocities of class Be stars are the highest and are close to the ve
locity vc. Moreover, the existence of a gas ring near the star can explain the 

presence of emission lines in  the stellar spectrum (see Chapter VI). In reality, 
the ejection of material from a s ta r  occurs not because of the rotation but due to 
the effect of other mechanisms (for example, in the form of prominences). A 
rapid stellar rotation, however, facilitates this process. 

5. Magnetic fields of stars. The study of the magnetic fields of stars is 
based on the Zeeman effect, comprising, as is known, a splitting of the spectral 
lines in  a magnetic field. In the simples, case a single line is split into three 
components in  a magnetic field, one of which is undisplaced while the other two 
are displaced an equal distance on both sides of it. The amount of displacement 
is proportional to the field intensity H. All line components are polarized, with 
the character of the polarization depending on the angle between the field direc
tion and the line of sight. In more complicated cases the line splits into a great
er number of components. 

The absorption lines in stellar spectra are usually considerabley broad
ened because of a number of reasons (thermal motion of the atoms, Stark effect, 
turbulence, star rotation). Therefore the Zeeman line components merge with 
each other even a t  a very high magnetic field intensity. In order to detect the 
magnetic f ie ld ,  it is necessary to employ special methods based on the use of 
polarized light analyzers. With the aid of such analyzers it is possible, to some 
degree, to isolate the Zeeman line components from each other and to determine 
the field intensity from their displacement. 

The magnetic field was first detected by Babcock in 1947 for the s ta r  78 
Virginis ,  belonging to the spectral class A2p. Babcock assumed that the strong 
magnetic field is associated with a rapid rotation of the star. It is ,  however, 
very difficult to detect the Zeeman effect from rotation-broadened lines. There
fore a class A star with narrow spectral lines, about which one can surmise that 
i t  is rotating very rapidly, like other class A s ta rs ,  but is viewed from the polar 
side, was selected for observations. In subsequent years  Babcock extended his 
observations, and a t  the present time his catalog (see [8I )  contains information 
on 89 "magnetic starstt. 

An examination of the aforementioned catalog leads to several conclusions. 

1. The magnetic field intensity a t  the surface of a s ta r  is about 1000 gauss. 
However, such values of H are evidently much greater than the mean value since 
i t  is impossible to measure field intensities of less than 200 gauss with the cur
rent method, 

2. Most of the stars in the catalog (70 of 89) belong to spectral class A 
(more precisely, to the interval B8-FO). Here, however, the selection of ob
servations is affected, to a considerable extent, by the preferential choice of 
stars similar to the star 78 Virginis. 
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3. Nearly all magnetic stars have llpeculiarT1spectra in which some lines 
are suppressed and others are enhanced with respect to normal spectra. 

4. The magnetic fields of all the stars studied a re  varying, In some cases 
the field changes periodically; in most cases, however, it changes irregularly. 

The facts enumerated have considerable value for clarifying the problem of 
the character of stellar magnetic fields and of their origin. A number of hypo
theses have been proposed up to now. Some of them relate the presence of mag
netic fields to stellar rotation. 

For a solution of the various problems of stellar magnetism, there must f i rs t  of 
all be an increase in observational data. Moreover, a theory must be developed 
for  the formation of absorption lines in a magnetic field. This theory is also 
required for studying the magnetic fields of sun spots, and a number of investi
gations have recently been carried out (see Section 15). 

_ _ 14. Stars of Different Spectrg gasses /166 

1. Temperature_ _dependence of ~ h ~ - s p e ~ t g u r - ._ _  Up to now we have been con
cerned with the problem of how the spectrum of a star is formed. Now we will 
briefly discuss the entire ensemble of stellar spectra. 

As  is known, in a f i rs t  approximation stellar spectra form a linear se
quence. All  spectral properties (for example, equivalent line widths) vary 
smoothly along the sequence. This is explained by the fact that the stellar spec
trum is primarily a function of one parameter-temperature. With a change in 
temperature the degree of atomic excitation and sonization in the stellar atmos
phere is altered, so that line intensities also change. 

In practice, all stellar spectra a re  divided into several classes. Arrang
ed in the order of decreasing temperature, these classes are:  O-B-A-F-G-
K--M. At the end the spectral sequence divides: spectral classes R-N (with 
carbon and cyanogen bands) and spectral class S (with zirconium oxide bands) 
a re  distinguished in addition to spectral class M (with titanium oxide bands). 
This branching is evidently caused by a difference in the chemical composition 
of the stars. 

Let us trace the change in spectrum as the stellar temperature increases. 
In the spectra of the coldest s tars  (class M and others), molecular bands and 
the lines of neutral metal atoms are present. With an increase in temperature, 
the molecules dissociate so that the molecular bands disappear (class K). More
over, the metals a r e  gradually ionized. The very complex class G spectra con
tain a vast number of lines of neutral and ionized metals. With a further tem
perature increase the intensity of the lines of the ionized metals increases 
(class F). In class A the Balmer series of hydrogen lines a re  the most intense. 
Helium lines a re  present in class B (since a fairly high temperature is required 
for  excitation of the helium lines lying in the visible portionof the spectrum. Fi
nally, the ionized helium lines become intense in class 0. 

One can also trace the variation in the intensities of the individual lines as 
the stellar temperature increases. For example, let us take the lines forming 
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through the transition of electrons from the excited state of a neutral atom. At 
low temperatures these lines are very weak since most atoms exist in the ground 
state. With an increase in temperature the atomic excitation gradually increases, 
which implies an increase in the equivalent widths of the lines being considered. 
The increase in the number of atoms in the excited state continues, however, only 
up to a certain temperature. With a further increase in temperature the number /167
of atoms in the excited state decreases because of the transition of atoms into the 
ionized state. Therefore the equivalent widths of the lines being considered de
creases. Thus, as the s tar  temperature increases, the equivalent widths of lines, 
arising from the transition of electrons from the excited state of a neutral atom, 
increase at first and then decrease. 

The equivalent widths of the lines of ionized atoms change similarly with 
a r ise  in temperature (i.e. , they increase at first and then decrease). Only the 
lines of the principal ser ies  of the neutral atom behave otherwise with an increase 
in temperature: their equivalent widths decrease (if the formation of molecules at  
low temperatures is disregarded). 

The qualitative considerations that have been discussed a re  confirmed by 
appropriate calculations. They are  based on using the Boltzmann and Saha for
mulas, which determine the degree of atomic excitation and ionization. As we 
recall, these formulas have the form 

(14.1)  

(14 .2)  

where 

(14. 3 )  

Saha [19] explained the spectral classification as a result of applying Eqs. (14. 1) 
and (14 .2)  to stellar atmospberes. 

We will use these formulas for calculating the temperature dependence of 
the equivalent line width. Just as before, let us consider a line arising from the 
transition of an electron from the excited state of the neutral atom. When the 
Eddington model is used, the equivalent line width wj11 be greater, the greater 

n 

the ratio ni/a where ni is the number of atoms in the i-th state in 1 cm' and 
V Y  

a
U 

is the continuous spectrum volume absorption coefficient (see Section 12). 

Let us  represent the quantityav in the form 

a v  = xvps (1.4.4) 
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where x is the absorption coefficient calculated per unit mass, and p is the den- /168-V 
sity. Furthermore, let us denote by q the fraction of a given element in the total 
density p ,  i. e. , le t  us set 

9P = %R, (14.5) 

where n is the number of atoms of the given element in  1cm3, and m is the 
mass of a single atom. With the aid of (14.4) and (14.5) we obtain a 

(14.6) 

We will assume that n = nl + n+, i. e. , we will ignore the number of ex

cited atoms as well as the number of doubly ionized atoms. Then, using Eqs. 
(14.1) and (14.2), we find 

(14.7) 

This formula also expresses the dependence of the quantity ni/a 
V 

on the 

temperature T. With the aid of the curve of growth, relating the equivalent line 
width W and the quantity ni/av , we can also find the dependence of W on T. 

Analogous formulas can also be derived for lines of the ionized atoms. 

From what has been said i t  follows that the temperature of the stellar at
mosphere can be determined from the form of the stellar spectrum (more pre
cisely, from the equivalent absorption line widths). This is called the ioniza
tion temperature. 

Fowler and Milne [20] proposed the following method for determining the 
ionization temperatures. Using Eq. (14.7), let us find the temperature a t  which 
the quantity n.1 / a ,  v (and, therefore, the quantity W) has a maximum, and let us 

assign this temperature to a star of that spectral class in  which the given line 
actually attains a maximum equivalent width. Assuming that xv = const and 

pe = nekT = const, from Eq. (14.7) we obtain the following equation for deter
mining the ionization temperature: 

(14.8) 
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The aforementioned authors, after having solved Eq. (14.8)  (and analogous equa- /169 
tions for the lines of ionized atoms) in terms of T and after having compared 
these T values with the data of observations, obtained a scale of ionization tem
peratures. A portion of their results is given in Table 16. In it, it is assumed 

that pe = atm for all stars. 

TABLE 16. IONIZATION TEMPER
ATURES OF STARS However, the ionization tempera

.- tures found by this method correspond 
onizati01 only on the temperature T but also onSpectral Line maximumf temper. the parameters x

V 
and ne. These pa-class ature 

K5 Na , i z P  -in?D 3900" rameters, in turn, a re  expressed in 
G5 hlg, 13P- m3S 1 5250 terms of the temperature T and the 
GO CaII. 1% -m2P 6290 gravitational acceleration g. There-
A0 H,Balmer ser.1 fore the equivalent line width also de-B2 He,PP- mrD 

pends not only on T but also on g. OfB i  SiIII. 011 
0 5  IIeII. ?. 4686, 35000 course, the quantity W depends much 

-. -Pickering ser.  	 more heavily on T than on g, which 
also explains the existence of the lin
ear  sequence of stellar spectra in a 

f i r s t  approximation. But the dependence of W on g must also be taken into con
sideration. 

2. Effect of gravitational acceleration on the spectrum. With the aid of 
Eq. (14 .7)  one can plot graphs giving the equivalent line width W in the form of 
a function of the temperature T. These graphs a re  different for different grav
itational accelerations g (because of the dependence of the quantities x and n 

V e 
not only on T but also on g). Here it turns out that the greater g, the greater 
the temperature required to achieve lines of maximum equivalent width. 

In the atmospheres of giant s tars  the g values a re  much less than in the 
atmospheres of dwarf stars. Therefore for a given equivalent line width the 
temperature of a giant should be less than the temperature of a dwarf. In other 
words, giant stars should be colder than dwarf s tars  of the same spectral class. 
This theoretical conclusion is qualitatively confirmed by the results by observa
tions. However, the differences, from observations, in the spectra of giants /170 
and dwarfs a re  much greater than those predicted by the theory based on theuse 
of Eq. (15 .7)  and an analogous formula for nt/av. To considerable extent this 

is explained by the fact that a change in the gravitational acceleration affects the 
equivalent line width not only because of a change in the degree of atom ioniza
tion but also because of a change in the role of pressure effects which directly 
influence the line width. 

The fact that the equivalent line width depends not only on the temperature 
T, but also on the gravitational acceleration g, requires refinements in the spec
tral classification. Each stellar spectrum must be characterized by the speci
fication of not one parameter, but two, related in a definite fashion to T and g. 
In other words, the spectral classification must be two-dimensional rather than 
one-dimensional. Empirical two-dimensional stellar spectrum classifications 
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have been proposed in several papers; however, from a theoretical viewpoint 
they have not been adequately substantiated. 

Let us note that the influence of the gravitational acceleration force on the 
stellar spectrum is usually called an absolute magnitude effect. This is explain
ed by the fact that for a given temperature the gravitational acceleration g is 
uniquely associated with a stellar luminosity L. In fact, we  have 

(14.9) 

and 

L =4nR20T~'. (14.10) 

Moreover, the quantities L and M are related by an empirical massluminosity 
relationship of the type 

L -J P ,  (14.11) 

where n is some constant (of the order of 3-4). When Te = const, from the for
mulas that have been presented we obtain 

g--L 
-f - d  (14.12)

n .  

Thus, g is greater, the smaller L. 

The fact that the effect of gravitational acceleration on .the lines of neutral 
and ionized atoms is different is of considerable interest. This makes i t  possible 
to determine, from the ratio of the equivalent line widths of an ion and a neutral 
atom in the spectrum of a star,  the gravitational acceleration at  i ts  surface and, 
therefore, the absolute stellar magnitude. The distance to a star can also be 
found by a comparison of the absolute stellar magnitude with its visual magni
tude. The method �or determining the so-called spectral parallaxes is based on 
this. This method began to be used some time ago and has yielded several V a l 
uable results. In practice, for each spectral class those ion and neutral atom 
lines a re  selected for which the intensity ratio is especially sensitive to the ab
solute magnitude. 

3. Stars of different spectral classes. The hydrogen Balmer lines are 
very intense in the spectra of stars of the early classes. A s  seen from Table 
16, they reach maximum intensity in spectral class AO, i. e . ,  a t  a temperature 
of about 10,000'. With a decrease in temperature these lines weaken because 
of a decrease in the number of atoms in the second state. With an increase in 
temperature the lines weaken because of an increase in atom ionization. 

The profiles and equivalent widths of the Balmer lines in the spectra of 
giants and dwarfs are significantly different. This attests to the strong effect 
of gravitational acceleration on the Balmer lines. In a given case, however, 
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this effect is caused not so much by a change in the degree of atom ionization as 
by the Stark effect. As  one goes from the giants to the dwarfs, the solid matter 
in the atmosphere increases so that the influence of the Stark effect is enhanced. 
For this reason the equivalent widths of the Balmer lines are appreciably great
er in the spectra of dwarfs than in the spectra of giants. 

The strong influence of gravitational acceleration on the Balmer lines pro
vides the possibility of determining the value of g for a given s ta r  by comparing 
the theoretical and observed line profiles. The theoretical profiles must be de
termined on the basis of photosphere model calculations for an e�fective stellar 
temperature and for different g values. A com.parison of theory with observa
tions makes it possible to select the most suitable g value. As  already stated 
above, knowing g makes it possible to find the stellar luminosity and then i ts  
parallax. This constitutes one method for determining the spectral paral.laxes 
of stars. 

From the spreading of the Balmer lines due to the Stark effect one can al
so roughly estimate the average electron density value in a stellar atmosphere. 
With the Stark effect taken into account, Eq. (8.46) was derived above for the 
absorption coefficient in the wings of the Balmer lines. Using the fact that in 
the atmospheres of hot s ta rs  the number of ions is equal to the number of free 

electrons (since the hydrogen is completely ionized), we can rewrite this ex- /172

pression in the form 


(14.13) 

For simplicity we will assume that the absorption lines a r e  formed in the 
presence of local thermodynamic equilibrium. Then the quantity rh, character

izing the line profile, is defined by Eq. (9.19). From this forniula we obtain 

(14.14j 

where 

3 %  +p., (14.15) 

2 6  

The quantity ah,enteringintoEq. (14.14), represents the volume line ab
sorption coefficient, equal to crh = n2\, where n2 is the number of hydrogen 

a.toms in the second state in 1cm3. Using Eq. (14.13), instead of Eq. (14.14) 
we find 

(14.16) 
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where 

(14.17) 

and 6e denotes the average free electron density in the atmosphere. 

The profile of the absorption line, broadened by the Stark effect, is deter
mined by Eq. (14.16). Strictly speaking, this formula is only applicable to the 
wings of the line. For the central portions of the line, however, the values of 
the quantity (Th are not significant since for them ah >> a!v and, consequently, the 

quantity uh/(uh+ Q! 
V 

) is close to 1. 

With the aid of Eq. (14.16) the following expression is derived for  the equi
valent line width: 

H’ =s ( I  -r).).)dI.=2.64AD. (14.18) 

The equivalent width W and the quantity A, representing the center line /173
intensity (since A e 1-r ), can be found for each Balmer line from observa-

A0 
tions. Using these values of W and A, from Eq. (14.18) one can find the quantity 
D and, therefore, the product n2ne/cYv. 

The quantity %/av must be found beforehand in order to determine the 

electron density 6e’ To do this, one can use the high terms of the Balmer ser
ies. Since the absorption coefficient decreases rapidly with an increase in line 
number, then for sufficiently high series terms the inequality gh<< a! will be 
satisfied. In this case the equivalent line width is equal to V 

(14.19) 

Equation (14.19) makes i t  possible to find the quantity n2/av, and Eq. (14.17)
the quantity ne. 

This method of determining the quantity ne has, however, the disadvantage 

that the Balmer lines for  which the inequality << a! is satisfied cannot be obv 
served in real life because of the merging of these lines, caused by pressure ef
fects. As we recall, another method of finding the quantity ne is based just on 
determining the number of the last  observable Balmer line. A comparison of 
the different methods of determining the average electron density in the atmos
pheres of hot stars can be found in I. M. Kopylov’s paper [21]. 

Intense lines of helium, which, as is known, follows hydrogen in abund
ance, are present in the spectra of class B and 0 stars in addition to the hydrogen 
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lines. The helium spectrum is much more complex than the hydrogen spectrum; 
however, it has been studied in considerable detail. Many helium lines are sub
ject to the Stark effect (quadratic in some cases, linear in others) and from the 
spreading of these lines one can draw a conclusion concerning the gravitational 
acceleration in  the stellar atmosphere. The influence of the Stark effect on the 
line of ionized helium, present in the spectra of class 0 stars, can be studied 
quantitatively in the same way as for the hydrogen lines. 

As already stated (in Section 5), radiation scattering by free electrons 
plays some role in energy transfer in the surface layers of hot stars. This pro
cess can markedly influence the energy distribution in the continuous stellar 
spectrum. In some cases it is also necessary to take this into account in study
ing the line spectra of hot stars. 

4. Stars of the late spectral classes. Numerous metal lines are present 
in the spectra of stars of the late classes. Since the excitation potentials of met
als are relatively low, there are quite a few atoms in the excited states. With 
electron transitions from these states, lines appear in the visible portion of the 

/174 
spectrum. At  very low temperatures, a large number of molecules is also form
ed in stellar atmospheres. Therefore intense molecular bands are seen in the 
spectra of stars of the latest classes. 

The "dissociation formula", analogous to the ionization formula (14. 2), is 
used to determine the number of molecules in the stellar atmosphere. Let the 
molecule AB be formed when the atoms A and B collide. Let us denote the con
centrations of these atoms and molecules by nA, nB and nAB In the presence 
of thermodynamic equilibrium we have 

(14.20) 

where gA9 gB, gAB are the statistical weights of the ground states of the atoms 

A and B and of the molecules AB, M is the reduced mass,  I is the moment of 
inertia, v0 is the fundamental oscillation frequency of the atoms in the molecule, 
U is the dissociation energy of the molecule. The quantities M and I, as is 
known, are equal to 

(14.21) 

where r0 
is the equilibrium distance between the nuclei of atoms A and B. 

Values of the parameters entering into Eq. (14.20) are listed in Table 17  
for some molecules. Here, the dissociation energy U is given in electron volts, 
the reduced mass M-in atomic mass  units, the distance between nuclei ro-in 
angstroms. 

Calculations from Eq. (14.20) show that in the atmospheres of cold stars 
(with temperatures of about 2000-3000") many different molecules should be 
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found. WitR an increase in temperature the number of molecules in the atmos
pheres decreases. However, even at temperatures of about 5000" there should 

still be a sufficient number of mole
cules in the atmospheres so that they 

TABLE 17, SOME MOLECULAR PA- could be detected through observa-
RAMETERS tions. In fact, a large number of 

weak molecular bands is observed 
~ ,-

Molecule 
)issocia- in the solar spectrum.

tion 
energy 

To analyze the molecular spec-
Hz 4.43 0.504 0.742 tra of stars it is necessary not only
C? 3.6 6.002 1.3'12 to determine the number of mole-CH 3:47 0.930 1.120 
co 11.11'2 6.853 f..209 cules in the atmospheres, but also 

CN 7 6.464 1.172 to know the structure of the spectra
NH 3.6 0.940 1.038 

0: 5.08 8.000 i ,207 and the band absorption coefficients. 
OH 4.37 0.948 0.971 For most molecules such informa-
Ti0 6 11.998 1A20 tion is only approximate at the pres-ZrO 7 13.584 1.42 ent time. Nevertheless, using the 

____.. - . _. . . .. .~ available da.ta, one can calculate the 
change in the intensities of the bands 

of various molecules with a change in stellar temperature. If i t  is assumed that 
stellar atmospheres a re  not markedly different from the solar atmosphere in 
chemical composition, then the calculated molecular spectra agree, in general / 175 
features, with the molecular spectra of class G-K-M stars. 

It is significant that the molecular spectra of stars a re  inherently depend
ent on the pressure in the atmosphere (since the number of molecules nAB is 

proportional to the numbers of atoms nA and nB). Therefore the band intensities 
of the same molecules a re  very different in the spectra of giants and dwarfs. 
Thus, one can draw a conclusion on the gravitational acceleration in the atmos
pheres from the character of the molecular spectra of stars. 

As already noted, a branching of the spectral sequence occurs in the late 
class region, which is explained by differences in the chemical composition of 
stellar atmospheres. In the atmospheres of class M stars, oxygen is more 
abundant than carbon so that the oxygen is combined primarily with titanium, 
forming TiQ molecules. In the atmospheres of class R and N stars, however, 
carbon is more abundant than oxygen. Therefore the oxygen combines not with 
titanium but with carbon, forming a CQ molecule (not having a band in the visible 
portion of the spectrum). Other carbon atoms enter into CH, CN and C2 mole
cules, characteristic of class R and N spectra. 

5. White dwarfs. The spectra of white dwarfs are drastically different 
from the spectra of s tars  of the main sequence. Their primary feature is a very 
small number of absorption lines. An appreciable portion of the white dwarfs 
do not generally contain absorption lines in their spectra (these spectra belong 
to the class DC). In the spectra of class DB white dwarfs only some heliumlines 
are present. Most of the white dwarfs that have been studied possess class DA 
spectra in which only a few of the first  terms of the hydrogen Balmer series a re  /176 
present. The .H and K lines of Ca  II and some Fe I lines are also present in the 
spectra of class DF, DG and DK white dwarfs. 
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The study of the spectra of white dwarfs is fraught with considerable diffi
culty because of the low luminosities of these stars. Only recently, Greenstein, 
with the aid of a 200-inch telescope, has obtained the spectrograms of several 
white dwarfs, making it possible to measure the absorption line profiles and 
equivalent widths (see [8]). 

Greenstein assumes that white dwarfs occur in two sequences. The stellar 
atmospheres of one of them consist primarily of hydrogen (spectral classes DA, 
DF, DK), and the stellar atmospheres of the second-primarily of helium (spec
tral  classes DB and DC). Hot stars of the second sequence contain helium lines 
in their spectra and belong to class DB. In the spectra of cold stars of the sec
ond sequence, however, no helium lines can be observed and these stars belong 
to class DC. 

The basic features of the spectra of white dwarfs are explained by the enor
6 10 mous gravitational forces in  their atmospheres (of the order of 10 -10 cm/

2/sec ). This leads to high particle densities in the atmospheres and, conse
quently, to a strong Stark effect. For  this reason the Balmer lines in the spec
t ra  of white dwarfs are very broad (their equivalent widths amount to tens of 
angstroms). Moreover, the high terms of the Ralmer series are merged and 
we see only a few of the f i r s t  terms of the ser ies  (usually no more than five). 
The weakness of the metal lines in the spectra of white dwarfs is more difficult 
to explain. The gravitational separation of atoms, i. e . ,  the fact that heavy 
atoms occur in deeper layers of the atmosphere than the light ones, may play a 
role here. 

The profiles and equivalent widths of the Balmer lines in the spectra of 
white dwarfs can be calculated approximately from Eqs. (14.16) and (14.18), 
derived with the Stark effect taken into account. The quantities A and D, enter
ing into these formulas, depend on the physical conditions a t  the "effectiveTTlev
el of line formation. We will assume that the continuous spectrum optical depth 
a t  this level is equal to 1/3, i. e . ,  

1 
cvAr =-, (14.22)3 

where A r  is the "thickness of a uniform atmosphere. IT Furthermore, from the 
equation of hydrostatic equilibrium we have 

(14.23) 

where 1-1 is the average molecular weight. Using, also, the usual formula relat- /177-
ing the temperature to the optical depth, we obtain 

(14.24) 
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where T0 is the surface temperature of the star, If values of the quantities T0 
and g are specified, as well as the chemical composition of the atmosphere, then 
with the aid of the last three formulas one can determine the quantities Ar,  p and 
T a t  the level of interest (values of the absorption coefficient (Y

V 
as a function of 

p and T are given in special tables). Then the desired quantities A and D for  a 
'given line can be found. 

A s  a result of such calculations the profiles and equivalent widths of the 
Balmer lines have been determined for  s t a r s  with high gravitational forces in 

the atmospheres [22]. Graphs, giv
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Figure 16. 

ing the equivalent widths of the H
Y 

line as a function of the quantity 
4 = 5040/T0, are presented in Fig. 
16 for different g values. From the 
figure i t  is seen that the equivalent 
line width increases with an increase 
in g. This is explained by the density
increase in the atmosphere and, con
sequently, by the increased Stark ef
fect. The graphs presented also show 
that the quantity W is strongly de
pendent on the temperature T0' 

A diagram, taken from Green-
stein's paper and plotted on the basis 
of observational data, is shown in 
Fig. 1 7  for comparison. In it, val

ues of the equivalent line width are plotted along the ordinate axis, and along the 
abscissa axis-values of the color index U-V. Since the quantity U-V is an ap- /178
proximately linear function of the quantity 40, then from a comparison of Figs, 
16 and 1 7  we can draw a conclusion concerning the approximate agreement of 
theory with observations. 

The absorption line profiles, calculated from Eq. (14.16), are very differ
ent for different temperatures. At high To values, the quantity A is small, and 
the quantity D is large, i. e., the line is wide but weak, The smallness of the 
quantity p

V 
a t  high temperatures and by the large values of the quantity0 

V 
/& a t  

high temperatures and for high gravitational forces. Absorption lines are diffi
cult to detect in the spectra of very hot white dwarfs, At low temperatures the 
quantity D is small, i. e. , the line is narrow. Such an absorption line character, 
determined theoretically, also agrees with observational data. 

More precise calculations of the Balmer line profiles in the spectra of 
white dwarfs have been made in  Weideman's paper [23] on the basis of stellar 
photosphere model calculations, The quantities To and g for a number of white 
dwarfs are estimated by a comparison of theoretical and observed HY line pro
files. 
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ed by the Stark effect. Only very high 

'U. .. .-... velocity values can be measured. White- . *  : dwarfs, to be sure, can in principle ro
a. - 0- tate very rapidly since the escape ve

0 0. - locity for them amounts to several 
2.7. - 0 .. thousand kilometers per second. 

10 . One can even assume that the rap
u	

-. -
. . d  - - A  

id rotation of white dwarfs makes the / 179: 

(14.25) 

where the quantity A(x) is defined by Eq. (13.26). Using the defined equivalent
line width, from. (14.25) we obtain 

W%C1- r(0)<A (0) ____ (14.26)
hv sin i * 

If W M 1A and v sin i & 1000 km/sec, then from the inequality (14.26) i t  follows 
that l-r(O) < 0. 05. However, lines with such a low intensity a re  difficult to ob
serve. Therefore i t  is possible that just the star rotation causes the absence 
of observable absorption lines of the metals in the spectra of white dwarfs (with 
the exception, for example, of the H and K lines of Ca 11, which have an appre
ciable equivalent width). 

It should be noted that the question of white dwarf rotation is also of in
terest  from the viewpoint of cosmogony. According to present opinions, a white 
dwarf is the final stage of evolution of a star, formerly on the upper portion of 
the main sequence and then passing through the giant and supergiant stages. 
Stars of the upper portion of the main sequence, however, rotate very rapidly. 
Therefore an investigation of the rotation of white dwarfs should contribute to 
an understanding of the evolution paths of a star. 
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CHAPTER III 

THE SOLAR ATMOSPHERE 

The Sun is a s ta r ,  and therefore much of what has been said in the preced
ing chapters about stars also refers to the Sun. However, the extreme nearness 
of the Sun to us permits a much more detailed study of i t  than of the other stars. 
In particular, the Sun is the only s ta r  whose disk we see. This makes i t  possible 
to study the brightness distribution over the solar disk and the change in spectral 
lines as one goes from the center of the disk to the edge (this has already been 
discussed above). Moreover, observations of the solar disk reveal very impor
tant details on it: spots, granulation, etc. Unfortunatley such details are also 
characteristic of other stars, but we cannot observe them. The various phenom
ena on the solar disk wil l  be briefly discussed at the beginning of this chapter. 

Most of the attention in this chapter will be devoted to the outermost layers 
of the solar atmosphere: the chromosphere and corona. There are facts indicat
ing that these layers exist in  other s tars  also; however, considerable difficulty 
is encountered in trying to study them. In the case of the Sun, however, it is rel
atively easy to study the chromosphere and corona, especially on the basis of ob
servations made during eclipses. The problem of solar radio emission, the source 
of which is these same outer layers of its atmosphere, is discussed briefly a t  the 
end of the chapter. 

The physical processes occurring in the Sun are of immense interest for 
astrophysics. Moreover, a study of them has considerable practical value be
cause of the important role the Sun plays with respect to the Earth. However, 
many problems in solar physics, lying outside the basic objective of this book, 
will  not be considered in detail here. One can learn about them from appropri
ate monographs (see, for example, [l] and [21). In particular, Waldmeier [3] 
has devoted a monograph to the Sun-Earth problem. 

Recently, magnetohydrodynamics, very important for explaining some so
lar phenomena, has undergone considerable development. Its fundamentals have 
been discussed in S. B. Pikel'ner's book 141. 
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15. General Informagon 

1. 	 Solar photosphere. A theoretical model of the solar photosphere can-
be constructed by solving the equations presented in Section 6. Up to the pres

ent time a number of such models 
have been derived, differing from 

TABLE 18. THEORETICAL MODEL OF each other in the specification of 
SOLAR PHOTOSPHERE chemical composition and also in 

the mathematical assumptions
-__ which are made during the calcu-

T kP kP, e-iff I lations.I; _-
The results of a solar photo

4650" 3,74 9.85 1,4 515 sphere model calculation, obtained 
I-I 8:;:. 4700 4,Oi 0,09 2,7 428 

0.04 4740 4.19 0.27 319 370 by Munch, with the additions of Min-
I 0106 4790 4,30 0,36 5,o 333 naert (see [l]) ,  a re  given in Table 18 

0; 08 w 4,38 0.44 6 10 307 

0,lO 4890 4,43 0,50 6,6 290 as  an example. This model is one of 

0,20 5090 4,60 0.71 9 , 4  232 the first in which there is taken into 

0.49 5400 4,77 0,96 13 , l  570 consideration the correct fundamental

0,60 5560 4,86 1 , I 5  15,4 135 
0.80 5870 4,91 I ,32 16.6 115 source of absorption in the solar pho
1,oo 6070 4,91 I ,@ 17.3 103 tosphere, i. e . ,  a negative ion of hy

drogen. In the calculations. the fol-
Commas represent decimal points. lowing basic parameters were taken: 

Te = 5713", g = 2.74.10 4 cm/sec 2 , 
log A = 3.8 (A denotes the ratio of the number of hydrogen atoms to the number 
of metal atoms). 

The optical depth, corresponding to the average absorption coefficient, is 
given in the first column; in the second-the temperature T; in the third and 
fourth-the logarithms of the total pressure p and of the electron pressure pe, 

respectively; in the fifth-the density of g/cm3; and in the last-the geometrical 
altitude in kilometers, measured from some level. 

An empirical photosphere model can also be constructed for the Sun. This /183-
possibility is based on the fact that in the case of the Sun we have observational 
data on the brightness distribution over the disk for different frequencies. A s  is 
known, the intensity of the radiation, leaving the photosphere a t  an angular dis
tance of 9 from the center of the disk, is given by the formula 

(15.1) 

where B
V 
(T) is the Planckian intensity a t  the temperature T and T~ is the optical 

depth at  frequency v. Assuming the temperature T is a function of T we can 
11, 

consider the relation (15.1) as  an integral equation for determining the quantity 
B p .  

To derive an approximate solution of Eq. (15.1) the quantity B
V
(T) is us

ually represented in the form of an expression in terms of some function of T v 
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with undefined coefficients. For example, one can se t  

Bv (2') = e~ + bvTv + C V T ~ - (15.2) 

Substituting (15.2) into (15.1) and integrating, we obtain 

Iv(O,+) = av + bv COS .4 +2 ~ ,cos2 6. (15.3) 

The coefficients av' bv and c
V 

are determined from the values of the quantity 

I
V 

(0, 9)obtained from observations. Instead of Eq. (15.2) Kourganoff suggested 

using the formula 

Bv(T) = a~ + bvTv + c ~ E ~ T V ,  (15.4) 

giving more accurate results both when T ~ -0 when T
V 
- m. Substituting(l5.4) 

into (15. l), we have 

I V ( 0 ,  e) = a,+ bv COS 6 + cv[l - C O S  6 In(i + sec e)]. (15.5) 

Equations (15.2) and (15.4) interrelate the quantities 7
V 

and T, i. e. , they 

give the optical depth a t  different frequencies a t  one and the same level in the 
photosphere (characterized by the temperature T). On the basis of the definition 
of the optical depth, we have 

h v  - CITY dT (15.6)av = --*dr dT dr' 


Consequently, if the quantity T
V 

is known as a function of T, then one can also 

find the quantity aV 
as a function of T (accurate to within a constant coefficient / 184 

of dT/dr for a given layer). In this way the empirical dependence of Q!
V 

on the 
frequency v is found a t  different depths. 

Chalonge and Kourganoff [5] made a detailed study of the absorption coef
ficient a t  different depths in the solar photosphere. The empirical dependence 
of Q! on v, found by them, was compared with the theoretical expression for a 

1, V 

due to the negative hydrogen ion. Such a comparison confirmed, without a doubt, 
the validity of the assumption made concerning the cause of absorption in  the so
lar photosphere. 

After the dependence of the temperature T on 7
V 

is determined, the depend

ence of the pressure p on 7 can be found. To do this we must make use of the 
U 

hydrostatic equilibrium Eq. (4.52), which together with Eq. (15.6) gives 

(15.7) 
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For the absorption coefficient a
V 

let us take the theoretical expression (5.14), 
after representing it in the form av = pp fe v(T) (since nl = p/mH because of the 
weak ionization of hydrogen in the solar photosphere). Therefore instead of Eq.
(15.7) we obtain 

(15.8) 

For a given chemical composition the electron pressure p can be expressed in e 
terms of p and T with the aid of the ionization formula. This allows one to inte
grate Eq. (15.8), i. e. , to find p in the form of a function of T

V' 
Then the density 

p is determined from the gas equation of state. For ascertaining the relationship
between optical and geometrical distances in the photosphere one can use the ex
pression 

(15.9) 

where r0 is an arbitrary constant. Since a
V 

depends on p and T, then to carry 

out the integration in (15.9) i t  is necessary to use the derived expressions in  
terms of T~ for these quantities. 

A number of authors have engaged in the construction of empirical models 
of the solar ,photosphere: Barbier, de Jager and others. In general features 
these models agree with the theoretical models; however, there are differences 
between them. In part, these differences a re  caused by deficiencies in  the work 
on photosphere theory in which certain important effects were ignored (the blank- /185
eting effect, convection, etc. ). 

2. Convection and granulation. In stellar photosphere theory i t  is usually 
assumed that radiative equilibrium occurs in the photosphere. We made such an 
assumption in Chapter I, and on its basis the photosphere structure was deter
mined and the radiative field in it was  calculated. In particular, the results of 
the solar photosphere model calculation, presented in Table 18, we obtained un
der the assumption of radiative equilibrium of the photosphere. A problem arises,  
however, as to whether such a photosphere condition will be stable, i. e. , whether 
a volume element, removed in any fashion from its equilibrium condition, will re
vert  to i t  due to the effect of forces present in the photosphere. If this will not oc
cur, then gas masses in the photosphere a re  set  in motion, i. e . ,  convection occurs. 

Let us determine the condition for the onset of convection in the photosphere, 
For this we will assume that some volume element experiences an upward move
ment. We will assume that the volume expands adiabatically during this move
ment. Then the temperature and density in the volume will change in a definite 
manner (in accordance with the adiabatic equation). If the temperature in the vol
ume is lower than the temperature of the surrounding gas (and, therefore, the 
density in the volume is greater than the density of the gas), then the volume re
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turns to the original position due to the effect of gravity. If, however, the tem
perature in the volume is greater than the temperature of the surrounding gas, 
then the volume will continue to rise. In the latter case convection begins. 

Thus the condition for  the onset of convection means that the adiabatic tem
perature gradient must be less than the temperature gradient for the radiative 
equilibrium, i. e., 

(15.10) 

This inequality can be put into a more convenient form. To do this wemake 
use of the hydrostatic equilibrium Eq. (4.42) and the equation of state of an ideal 
gas (4.43). From these equations i t  turns out that 

(15.11) 

Therefore we obtain 

(15.12) 

Consequently, instead of (15.10) we have /186 

(15.13) 

The condition for the onset of convection in the form of the inequality (15.13) was 
derived by Schwarzschild in 1905. 

Let us see whether the inequality (15.13) is satisfied in the photosphere. To 
do this let us  calculate its left and right sides separately. 

A s  is known, for an adiabatic change of state the relation 

p l + P  =const, (15.14) 

is satisfied, where y = c
P
/c 

v' 
c 
p 

is the specific heat of the gas for constant 

pressure,  and c is the specific heat of the gas for constant volume. From (15.14)
V 

it follows that 

Y--i 
(15.15) 
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For a monatomic gas y = 5/3. Therefore in the given case 

dlnT 2
=s’ (15.16) 

To calculate the right side of the inequality (15.13) let us make use of Eq.
(4.49), defining the quantity dT/dr for radiative equilibrium in the case l . ~= const. 
On the basis of Eqs. (15.12) and (4.49)we have 

(15.17) 

From a comparison of Eqs. (15.16) and (15.17) i t  is seen that the inequality 
(15.13) is not satisfied, i. e. , convection does not appear in the photosphere. Sub
sequent investigations have established, however, that convection can neverthe
less occur in photospheres for two reasons: 1)because of a change in the absorp
tion coefficient 3.t with depth, 2) because of a change in the degree of atomic ioni
zation with depth. The latter circumstance is associated with the fact that atomic 
ionization processes will lead to a change in the specific heat of the gas, more 
precisely to a decrease in the effective value of the quantity y .  Since hydrogen is 
the most abundant element in photospheres, then the ionization of hydrogen atoms 
exerts the greatest effect on the quantity (d In T/d In P),~. Calculations show that 

convection appears in the photosphere when the hydrogen ionization reaches a cer
tain level. The degree of hydrogen ionization increases with an increase in depth. /187
When the hydrogen becomes almost completely ionized, convection ceases. 

Thus, convective zones, caused by the partial ionization of hydrogen, exist 
in stellar photospheres. In these zones the temperature gradient is adiabatic. To 
determine the temperature gradient in going from the radiative equilibrium zone 
to the convective zone one can use the graphs of the quantity ( d In T/d P ) , ~as a 
function of T and p, given by Uns6ld 163. 

The depth at which the convective zone begins is different for different s tars ,  
In the photospheres of later class stars the convective zone is located relatively 
deep (and it is deeper, the colder the star). In the solar photosphere the convec
tive zone beings a t  an optical depth in the visible portion of the spectrum of about 
2. 	 For class A stars the convective zone moves to the outermost photosphere 
layers. 

Since the convective zone in the solar photosphere occurs at a relatively 
shallow optical depth, i t  can have an effect on some of the observed characteris
tics of the Sun. According to Siedentopf [7] ,  the existence of convection is ex
plained by the form itself of the Sun’s surface, namely, the so-called granulation, 
i. e. , the grainy structure of the surface. A granule is identified with a convec
tive cell in which heated matter r ises upward (and i t  flows downward in the spaces 
between granules). 

As observations show, granule dimensions amount to 500 km on the average, 
and their average lifetime is equal to approximately 8 minutes. Crude theoretical 
estimates of these quantities lead to about the same values. These estimates a re  
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based on the concept that in  an atmosphere with a density gradient the convective 
elements must have diameters of the same order as the local height of the hom
ogeneous atmosphere. Rising, the convective elements expand adiabatically and 
merge with other elements. New elements of smaller diameters are formed in 
their place (since the height of the homogeneous atmosphere decreases as one 
goes to solar layers nearer  the outside). Such a model for the evolution of gran
ulation is confirmed by motion pictures of the Sun's surface. 

3. Sunspots. Dark formations-sunspots-are observed periodically on the 
solar disk. The linear dimensions of the spots range up to 100,000 km. Their 
life varies drastically: from several hours to several months. Each spot con
sists of a darker central area (or umbra) and a brighter rim, the so-called pe
numbra. However, the spots appear dark only in contrast with the photosphere; / 188 
in reality they are extremely hot. The effective temperature of a spot is about 
4500" (and the effective photosphere temperature, as is known, i s  equal to5785"). 
The spectrum of a spot belongs to class KO, whereas the spectral class of the 
photosphere is G3.  

Spectroscopic study of the spots has made i t  possible to draw a conclusion 
about gas motion in them. The velocities of this motion are of the order of 2 km/ 
sec in the penumbral region. In the lower layers of the spot material flows out 
of it, and the upper-into it (the Evershed effect). With the existence of such 
flows taken into consideration, one could conclude that essentially a convective 
survey transfer occurs in the spot. In reality, however, radiation plays a major 
role in the energy transfer in a spot, just as in the photosphere. A comparison 
of theoretical and observational data on the intensity of the radiation coming from 
a spot leads to such a conclusion. In a spot (as in the photospheres of cold stars 
in general) light absorption is produced primarily by the negative hydrogen ion. 
Therefore i t  can be assumed, approximately, that in the visible portion of the 
spectrum the absorption coefficient does not depend on the wavelength, and the 
intensity of the radiation, coming from the spot, is determined by Eq. (4 .39)  in 
the case of radiative equilibrium. This formula gives: 1)the energy distribution 
in the spot spectrum for  a given angle 9, 2 )  the change in the radiation intensity 
at  a given frequency v with a change in the location of the spot on the solar disk. 
The values of the radiation intensity I v ( O ,  a), computed from Eq. (4 .39) ,  agree 
satisfactorily with the results of spot observations. However, the agreement be
tween theory and observations ceases to exist when convective equilibrium of the 
spot is assumed. 

The physical conditions in spots are investigated by the same methods as 
the conditions in stellar atmospheres. In particular, the construction of curves 
of growth and the analysis of spectral line profiles are employed. The degree 
of atomic excitation and ionization, the electron density, the velocities of the 
gases and other characteristics of the spots are determined as a result. 

The most important feature of sunspots is the presence of magnetic fields 
in them. No field-free spots are observed. Moreover, weak magnetic fields 
are sometimes observed before the appearance of a spot a t  a given point of the 
photosphere (or for some time after its disappearance). 

The magnetic fields of spots are studied on the basis of observing the Zee
man effect, representing a splitting of the spectral lines in a magnetic field. 

1 7 1  
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The splitting pattern depends on the angle between the field direction and the line 
of sight. The magnetic fields of spots are usually perpendicular to the solar sur
face. Therefore the longitudinal Zeeman effectoccurs for a spot in the central /189-
portion of the disk. In this case the line is split into two circularly polarized 
components, separated from the normal location of the line by the amount 

AA =4.7-iO-5gA2E, (15.18) 

where the wavelength h is expressed in centimeters, the field intensity H is in 
gauss and g is the Lande factor. A determination of the intensity of the magnetic 
fields of spots with the aid of Eq. (15.18) leads to values of the order of several 
hundred and thousands of gauss. 

In most cases the Zeeman line components a re  not observed individually, 
and they a re  merged, i. e., the line is broadened in the presence of the magnetic 
field. In this situation an increase in the equivalent width occurs for lines of av
erage intensity so that the curve of growth is raised in its rYlatl'portion. The 
magnetic field intensity can be estimated from the curve of growth for spots. 

For a detailed interpretation of the spectra of sunspots a theory of absorp
tion line formation in a magnetic field is required. This theory has recentlybeen 
developed by a number of authors: Unno, V. E. Stepanov, D. N. Rachkovskiy, 
and others. In Rachkovskiy's paper [SI the problem of absorption line formation 
in a magnetic field was considered for fairly general assumptions (in particular, 
noncoherent light scattering is taken into consideration). 

The cause of sunspot formation is not completely clear. Undoubtedly their 
appearance is associated with the appearance of magnetic fields within the con
vective zone which are carried outward in some manner. As is known, the mag

netic energy density is equal to 2/87r. In the deep layers this energy is less 
than the convective kinetic energy zpv 1 2  and the magnetic field does not hinder 
convection. But the reverse inequality exists in the outer portions of spots, i.e., 

(15.19) 

and the magnetic field inhibits convection. It is possible for the outer portions 
of spots to be colder than the photosphere surrounding them because of the ab
sence of convective energy transfer. 

Groups of spots a re  usually surrounded by faculae, which a re  bright forma
tions on the solar disk. As a rule, faculae appear somewhat before spots and 
exist, on the average, three times as long. Faculae a re  especially visible a t  
the edge of the disk where the photosphere is less bright than a t  the center. This 
fact is explained by the fact that the facula temperature in the surface layers is /190-
higher than the photosurface temperature (by about 1000°). It is assumed that 
energy transfer in faculae occurs primarily by convection. 

4. Solar activity. Besides faculae and spots, other transient processes 
a re  observed on the Sun. The most outstanding of these a re  chromosphere flares 
and prominences. 
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A chromosphere f lare  is a sudden increase in brightness of some portion of 
the solar surface (approximately equal in area to a spot). A flare usually rises 
to maximum brightness in a few minutes but i t  fades more slowly. Sometimes 
flares can be observed in white light, but for the most part  they are observed in 
the Ha line and in some other lines by means of a spectroheliograph. In most cases 

a flare occurs over spot groups o r  not far from them. From the observed energy 
of flares it is found that the density of material in flares is much greater than in 
neighboring portions of the chromosphere. Different hypotheses associate the 
cause of flares with the character of the magnetic fields over spot groups. 

The study of flares has great significance for geophysics since they exert a 
strong influence on the state of the earth 's  ionosphere. During flares, streams 
of fast  particles and high-frequency radiation (ultraviolet and x-ray) flow from the 
Sun. These particles and photons, striking the earth's ionosphere, cause mag
netic storms, disruption of radio communications and many other phenomena. 

The study of prominences, which are gas clouds observable above the edge 
of the solar disk, also occupies an important place in the physics of the solar at
mosphere. More precisely, prominences a r e  above the chromosphere-in the 
corona. The spectrum of a prominence consists of discrete bright lines of hydro
gen, ionized calcium, etc. Since prominences are projected onto the photosphere , 
there is practically no continuous background in their spectra and absorption lines 
are absent. 

Prominences can, however, also be observed on the solar disk. In this case 
they reveal themselves because of light absorption in discrete lines. Prominen
ces on the solar disk can be detected with the aid of spectroheliograph, which al
lows one to photograph the Sun in light of a specific wavelength. Dark filaments 
(or,  as they are sometimes called, dark flocculi) are seen in spectroheliograms 
recorded in the bright lines of helium, ionized calcium, etc. These formations 
represent prominences projecting onto the solar disk. 

Prominences differ widely in shape, size and the character of their move
ment. In a crude classification one can distinguish between quiescent prominen
ces (not changing noticeably over a period of hours and days) and eruptive promi
nences (moving with enormous velocities ranging up to 1000 km/sec). There is 
also a separate class of prominences associated with sunspots. 

Very valuable data on the motion of prominences have been obtained through 
motion pictures, made at a number of observatories. In particular, i t  was as
certained in this manner that eruptive prominences arise from quiescent because 
of a sudden increase in velocity. It has also been established that many promin
ences are formed through the condensation of coronal matter, which then moves 
downward in the form of streamers.  The motion of prominences is undoubtedly 
associated with magnetic fields existing in the Sun. In many cases i t  has the char
acter of the motion of charged particles along magnetic force lines. The motion of 
prominences has been studied in detail by A. B. Severny a t  the Crimean astrophy
sical observatory (see, for  example, [9]). The problems of prominence luminos
ity are of great interest. However, we will not dwell on this here since they are 
similar to the problems of chromosphere luminosity, which will  be considered in 
detail in the following section. 

/191 
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Sunspots, faculae, flares and prominences are the most characteristic ex
amples of the appearance of solar activity. As is known, this activity varies 
markedly with time, with the approximate period of variation being 11 years. 
However, solar activity has no effect on the stellar character of the Sun. In oth
er words, the appearance of spots and prominences on Sun-like stars is not ob
servable. Moreover, this does not exclude the fact that such phenomena occur 
for other star types onalarger  scale and, therefore, a r e  reflected in the observed 
variations in the stellar brightness and spectrum. 

16. Chromosphere 

1. Line intensities. During solar eclipses, when the Moon covers the en
tire solar disk, 'we can observe a spectrum consisting of bright lines on a dark 
background. These lines belong to the chromosphere, which is the outermost 
layer of the solar atmosphere (if the corona is disregarded). In composition the 
line spectrum of the chromosphere is similar to the usual Fraunhofer spectrum 
of the solar disk, i. e. , there are bright lines in the chromosphere spectrum a t  
the same locations where absorption lines appear in the disk spectrum (with some 
exceptions, which will be indicated below). 

The character itself of the chromosphere spectrum is quite clear. As we 
recall, the upper layers of the solar atmosphere yield practically no continuous 
spectrum radiation, but do cause light scattering in spectral lines. Therefore /192
during observations of the photosphere along a tangent to the photosphere we do 
not see  a continuous spectrum and we see only bright lines. When, however, the 
solar disk is observed, then a continuous spectrum with absorption lines, arising 
because of the fact that line radiation, scattered by the atmosphere, is returned 
to an appreciable degree to the photosphere, is seen. 

From the observational data one can find the total radiation intensity in any 
line at  a height'h from the edge of the disk. Let us designate this quantity by I(h). 
It obviously represents the amount of energy radiated in a line by a column with 

a cross sectional area of 1cm 2 passing through unit solid angle at a distance h from 
from the photosphere during 1sec (Fig. 18). 

The quantity I(h) decreases with an increase in h, and after an analysis of the 
results of observations of it, it is usually represented in the form 

I (h)  =I(O)e-eh, (16.1) 
S -I(h) 

h h' 
where I(0) and p are some parameters. 

Knowing the quantity I(h) for a given line, we 
can determine the volume emission coefficient in 
this line. Denoting it by E(h), we have the following 
equation 

Figure 18. (16.2) 
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where h' is the height of an arbitrary point in the line of sight and s is the distance 
measured along the line of sight. 

If R is the Sun's radius, then from Fig. 18 i t  follows that 

9= (R + h')2- (R  + h)2. (16.3) 

Since the atmosphere thiclmess is small compared to R, instead of (16.3) we can 
write 

s2 = 2R(h'- h) .  (16.4) 

With (16.4) taken into account, Eq. (16.2) assumes the form 

OD 

h l r h  * 
(16.5)I ( h )=I%$e (h')dh' -

Equation (16.5) is the integral Abel equation for  the desired function E(h). /193 
The solution of this equation is given by the formula 

1 d I(h')dh'
e(h)= -____

x)~Gs lh'-h (16.6)d h ,  

Substituting (16.1) into (16.6), we find 

e (h)=E(0)e-+'', (16.7) 

where 

(16.8) 

Thus, with the aid of Eq. (16.7) and the quantities I(0) and P derived from 
observations the emission coefficient E can be determined for each line at any 
height h. 

The quantities ~ ( h )were determined on the basis of observations of many 
solar eclipses. A portion of the results obtained by Menzel and Cillie [ lo] is 
presented in Table 19. 

These results are of considerable interest for ascertaining the physical con
ditions in the upper layers  of the solar atmosphere. 

2. Self-absorption in lines. In writing Eq. (16.2) we assumed that the 
chromosphere is transparent to self-radiation. Such an assumption, however, is 
valid only for  the upper chromosphere. When considering the lower chromosphere, 
however, it is necessary to take account of self-absorption in spectral lines, 
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TABLE 19. CHROMOSPHERE RADIATION IN DIFFERENT 
SPECTRAL LINES 

- .. - _  -. -

Wave- Wave-
J.ength '.''' c: - btomllength I R  z (0) 

-
1.16 -1.63 He+ 4686 -538 
1.16 -2.22 MiZ 3838 -2,90 
i , i 6  -2,56 Ti+ 4572 -3.19 

ca 4227 -3.190.58 -4,96 ca+ 3968 -2,930.67 -4.49 
d 

3934 -2.85 
I 

Commas represent decimal points. 

Let us denote by E (h) and m (h) the emission and absorption coefficients at -V V /194 

frequency v within a given line at a height h above the photosphere. Then the in
tensity of the radiation a t  frequency v, passing to the observer a t  a distance h 
from the edge of the disk, will be equal to 

(16.9) 

where t
V 

is the optical distance, measured along the line of sight, i. e. , 

(16.10) 

We will assume that the quantity 

(16.11) 

does not depend on the frequency within the line. This, in particular, is the sit
uation for completely noncoherent light scattering. 

It is obvious that the quantity S is determined by specifying the ratio of the 
numbers of atoms in the upper and lower states for a given line, i. e. ,  the ratio 
nk/ni. In fact, with the aid of (16.11) we can write 

r i k A k i h v i k  =4 x S  5 avdv. (16.12) 

Moreover, on the basis of Eq. (8.12) we have 

(16.13) 
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where, in the interests of generality, negative absorption is taken into considera
tion. From Eqs. (16.12)  and (16.13) ,  using the expressions ( 8 . 5 )  that interre
late the Einstein transition coefficients, we obtain 

(16 .14)  

The quantity ni/%, of course, varies in the chromosphere. However, for  

simplicity we will assume it is constant (corresponding to some average "excita
tion temperature"). Then the quantity S will be a constant in the chromosphere. 

Using Eq. (16 .11)  and the assumption that S is constant, instead of Eq. /195 
(16 .9)  we obtain 

(16 .15)  

or ,  after integration, 

lv( h )=S [I- e - f ~ q ~ ) ] ,  (16 .16)  

0where tv  (h) is the optical thickness along the line of sight. 

Representing the quantity CT 
V 

in the form (r
U 

= nikv, where k 
V 

is the absorp

tion coefficient, calculated for  one atom, we can write 

Introducing the notation 

instead of (16.16)  we obtain 

1,(h )=S[I-ek9i(")]. 
Integration of Eq. (16 .19)  over all frequencies yields 

W 

l ( h )=S\[Ie--R.-h'dh)]dv, 
0 

where I(h) is the total line intensity. 

(16 .17 )  

(16 .18)  

(16 .19)  

(16 .20)  
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Equation (16.20) provides the possibility of determining the quantity N.(h)
1 

from the radiation intensity I(h) obtained from observations. The quantity N.(h) 
2 lrepresents the number of atoms in  the i-th state, in a column with a 1cm cross  

section, flowing a t  a height h from the disk edge. This quantity is related to the 
atom concentration ni(h) by Eq. (16.18), which can be rewritten in the form 

-a ni(h’)
Mi(h)=12R 

h 

1 
vh’ 
--h 

dh’. (16.21) 

Solving this Abelian equation, we can determine the desired quantity n.(h).
1 

This method for finding the atom density in the chromosphere cannot be con
sidered accurate since it is based on the assumption that S is constant, which is /196 
not true in  reality. The latter is seen to be so if only because Eq. (16.16) gives 
a line with maximum intensity at i t s  center whereas observed line profiles often 
have a saddle-shaped form. Therefore there is interest in the problem of deter
mining from Eq. (16.9) not only the atom density ni(h) but also the quantity S(h) 

(or the quantities ni(h) and %(h)). At the present time, however, the values of 

the function I
V 
(h) available to use (characterizing the profiles of chromosphere 

lines a t  different heights), which are required for solving this problem, are 
scarcely sufficiently accurate. 

It should be emphasized that the presence of self-absorption in the chromo
sphere st i l l  says nothing about a greater chromosphere optical thickness along 
the radius. Let us  consider chromosphere layers, higher than h. The optical 
thickness of this layer along a radius is equal to 

B 

zV(Jz)=kvs  ni (h’)dh’. (16.22) 
h 

Assuming that the atom density decreases with height as e-ph, we obtain 

(16.23) 

However, the optical thickness of the chromosphere for a ray, passing at a dis
tance h from the disk edge, on the basis of Eq. (16.17) is equal to 

(16.24) 

Therefore we have 

(16.25) 
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0Substituting.P M into the formula derived, we find T (h) m 0.015 tv (h).
V 

Consequently, the quantity Tv(h) can be less than unity even for large values of 
0tv (h), i. e. , for strong line self-absorption. One can assume that in such a 

case only single scattering of the spectral line light occurs in the chromosphere. 
For some strong lines of the chromosphere spectrum (for example, for  the Bal
mer  lines and the H and K Caf lines), however, the optical thickness of the chro
mosphere along a radius is evidently greater than unity. 

3. Distribution of atoms with height. The distribution of atoms with height /197 
can be found on the basis of the chromosphere spectral radiation. Let us  assume 
that line self-absorption is absent. Then the volume line emission coefficient is 
determined by Eq. (16.17). Utilizing the relation 

we obtain 

rtk (h) = nk (0)e+, (16.27) 

where 

(16.28) 

To pass from the number of atoms in the i-th state to the number of atoms 
in the ground state, the Boltzmann formula is usually used with some average 
atom excitation. temperature T (although an appreciable e r r o r  is possible in this 
situation since T can vary in the chromosphere). After making such a conver
sion, we have 

ni (h)=nl (0 )  (16.29) 

where 

(16.30) 

The variation of concentration with height for any tom ca be fou d from 
Eq. (16.29). The parameters n1(0) and S, entering into this formula, are deter
mined on the basis of observational data (for example, the data presented in 
Table 19). 

Let us  compare Eq. (16.29) with the barometric height formula 

(16.31) 
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where ma is the mass of a given atom and g is the gravitational acceleration in 

the solar atmosphere. 

Although Eq. (16.29) and (16.31) are outwardly similar,  they yield vastly' 
different results. According to the barometric height formula, the greater the 
atomic mass,  the fas te r  the concentration falls off with height. According to Eq.
(16.29), however, with values of ,B derived from observations, the concentration 
decrease with height is approximately the same for different atoms. 

In addition, for any atom the value of the quantity ma g/kT is much greater 
than the value of p. For example, for  hydrogen mag/kT = 6.6. (when T s 
FZ 5000"), while /3 = 1.16' 10-8 . The difference in the values of these quantities is /198 
even greater for  other atoms. Consequently, the fall-off in atom concentration 
with height in the chromosphere occurs much more slowly than the barometric 
height formula requires. 

As  is known, the barometric height formula is derived under the assump
tion that each volume element of gas is in equilibrium in terms of the gravita
tional force and the gas pressure force. Since the density distribution in  the 
chromosphere does not satisfy the barometric height formula, then we must con
clude that the chromosphere is not in equilibrium in terms of these forces. More 
precisely, there must be an additional force, oppositely directed to the gravita
tional force, present in the chromosphere. 

Milne has expressed the notion that such a force in the chromosphere can 
be the radiation pressure in  the spectral lines, On the basis of Eq. (4 .56)  we 
can write the following expression for  the light pressure force acting on all atoms 
of a given element in a certain stage of ionization in a unit volume: 

(16.32) 

where kik is the spectral line absorption coefficient calculated for one atom, Hik 
is the radiation flux in this line, A vik is i ts  width. In calculations of the quantity 

f from Eq. (16.32) i t  must be borne in mind that the maximum in the energy dis
tribution curve in the solar spectrum is in the visible region, and most atoms 
are in the ground state. Therefore the light pressure force will be a maximum 
for atoms of that element for which the principal series lines lie in the visible 
portion of the spectrum. Only neutral sodium and ionized calcium satisfy this 
condition. The f i r s t  of these atoms has the D1 and D2 resonance lines in the 
visible portion of the spectrum and the second-the H and K resonance lines. In 
the solar atmosphere the atoms of these elements exist predominantly in the sing
ly ionized state. Therefore we come to the conclusion that the light pressure 
force will be a ma.ximum for the calcium atoms. This force can be estimated 
from the formula 

1 
j =-Wki2HizAVi2, (16.33)C 

i. e. , by considering the radiation pressure in the resonance lines only. 
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Calculations from Eq. (16.33) show that for calcium the light pressure force 
is comparable to the gravitational force. Consequently, light pressure can influ
ence the distribution of calcium atoms with height in the chromosphere. The ef- /199 
fect of light pressure on other atoms, however, is very slight. It is also impos
sible to conclude that the calcium atoms are carried away beyond the entire chro
mosphere itself. Thus, one must recognize that the vast extent of the chromos
phere cannot be explained by the effect of light pressure. 

Some authors have cited turbulent motions occurring in the chromosphere 
as an explanation for i ts  great height. A conclusion concerning such motions 
must obviously be drawn on the basis of the line widths observed in the chromos
phere spectrum. If it is assumed that the line widths are caused by random atom
ic  motion, then values of about 10-20 km/sec are obtained for the velocities of 
this motion, i. e., greater than the average thermal velocities of the atoms. With 
turbulence taken into account in the barometric height formula (16.31), the quan

tity v$ = 2kT/m a must be replaced by the qudmtity v0 + vt '  where vt is the tur

bulence velocity. In this case, instead of the barometric height formula we have 

(16.34') 

For  vt E 20 km/sec, Eq. (16.34) gives approximately the same behavior of atom 

density with height as does Eq. (16.29), derived on the basis of observational 
data. 

At the present time, however, the opinion that the chromosphere exists in 
dynamic rather than static equilibrium is the most correct. The view of a chro
mosphere as consisting of individual filaments or s t reamers  (often called spi
cules) itself leads to such a viewpoint. These s t reamers  are ejected from the 
photosphere �or some reason or  other. They may be associated with granulation 
since from a crude estimate the number of s t reamers  is equal to the number of 
granules. The average lifetime of chromosphere s t reamers  is several minutes. 
Their velocity is  about 20 km/sec. 

4. Excitation of atoms in the c h r o m o s p h s .  A s  already stated, the chro
mosphere spectrum, in terms of theabundance of lines, is similar to the Fraun
hofer spectrum of the solar disk in i ts  general features. There are, however, 
some exceptions to this. The most significant of them is the presence in the chro
mosphere spectrum of very intense helium lines (as is known, the element helium 
was discovered from these very chromosphere lines). Moreover, a weak line a t  
h 4686, belonging to ionized helium, is seen in the chromosphere spectrum. The 
presence of a large number of excited and ionized helium atoms in the chromos
phere is not a t  all consistent with the temperature of the solar photosphere. The 
concentration of excited helium atoms, calculated from the Boltzmann formula 
for  a temperature of about 6000°, is approximately a billion times less than the /200
concentration of these atoms obtained from observations. 

Thus, there is an anomalous excitation of atoms in the chromosphere. Init
ially, to explain this phenomenon a hypothesis was advanced concerning the exist
ence of a considerable ultraviolet excess in the solar spectrum. This hypothesis, 
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however, cannot be accepted if only because the ultraviolet radiation coming from 
the photosphere would also produce atomic excitation in the deeper layers of the 
atmosphere, which is not observed. The same objection can be raised with re
spect to the assumption of atomic excitation by a flow of fast particles coming 
from the photosphere. 

Among the other attempts to explain the anomalous atomic excitation in the 
chromosphere, let us mention an interesting hypothesis according to which this 
excitation is caused by calcium atoms. Due to the light pressure effect, atoms 
of ionized calcium rise rapidly in the atmosphere, and then some of these recom
bine with free electrons. However, the light pressure does not affect the neutral 
calcium atoms and they fly downward very rapidly under the influence of gravity.
Excitation of helium atoms occurs through collisions with these atoms. 

This last  hypothesis is not confirmed by calculations, but i t  is interesting 
because the concept of helium excitation a t  the top of the chromosphere (toward 
the corona) rather than a t  thebottom (toward the photosphere) was  f i r s t  expressed 
in  it. Subsequently, after it was found that the corona has a high temperature, 
this concept took on a more realistic form. The hot corona must undoubtedly 
strongly influence the cooler chromosphere. In the opinion of some authors the 
emission of the chromosphere in the helium lines can be caused by the high-fre
quency coronal radiation. Moreover, the corona can heat the upper chromosph
ere layers and the helium atoms in  them can be excited by electron impact. The 
problem of helium atom excitation in the chromosphere has been considered in 
a number of papers (see, in particular, [ll]). 

Thus, we must conclude that the chromosphere consists of both cooler as 
well as warmer regions. The physical model of the chromosphere must there
fore  be rather complex. Several chromosphere models have been proposed up 
to now. In some of them it is assumed that the temperature and density in the 
chromosphere depend only on the height. In other models it is assumed that there 
are cool and warm regions at each height. An interesting model of the second 
type has been proposed by V. A. Krat and V. M. Sobolev [12]. We cannot describe 
the different chromosphere models here. Let us  only mention that to select the 
most correct one i t  is necessary to use not only the results of observations in the 
visible portion of the spectrum, but also the results of rocket observations in the 
ultraviolet as well as data from radio astronomy. 

5. Ultraviolet solar spectrum. Rocket flights have made it possible to ob- /201 
tain the solar spectrum in the ultraviolet region. The results of measurements 
of these spectra have been published in many papers and books (see, for  example, 
[13] and [14]). The theoretical interpretation of ultraviolet spectra has only be
gun and one can expect great advancements in it in the future. 

The solar spectrum in the near ultraviolet region (down to about 1900 A) is 
similar to the spectrum in the visioble portion, i. e.,  it is a Continuous spectrum 
with absorption lines. N e a r  2100 A the intensity of the continuous spectrum drops 
sharply (absorption by a number of atoms and molecules has been mentioned as a 
ossible cause of this). Emission lines appear in the solar spectrum a t  about 1900[ With a further decrease in wavelength the continuous spectrum weakens and the 

emission lines become more pronounced. Beyond 1500 A the solar spectrum con
sists of bright lines on a weak continuous background. The hydrogen La line 
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(1215.67 A )  is distinguished among the bright lines of the ultraviolet solar spec
trum. Other lines of the Lyman series, as well as the Lyman continuum, are 
seen in the spectrum. In addition, the resonance line of ionized helium (303.78
A )  is very intense. Many lines of ions of C, N, 0, Si, etc. , (including the re
sonance lines) are also present in the spectrum. 

Most of the bright lines of the ultraviolet solar spectrum arise in  the chrom
osphere and in the transition region between the chromosphere and corona. Some 
lines arise in the corona. It is important to emphasize that we can observe these 
lines only because of the extreme weakness of the continuous solar spectrum in 
the ultraviolet. Bright lines of the same intensity in the visible portion of the 
spectrum cannot, as a rule, be detected since they are superimposed on a strong 
continuous spectrum or on an absorption line, the intensity within which is also 
high. Only during eclipses, when the chromosphere and corona are not projected 
onto the photosphere, can we observe the bright chromosphere and coronal lines 
in  the visible portion of the spectrum. In some cases, however, the effect of 
chromosphere emission can be observed even in the visible portion of the spec
trum of the solar disk. It appears as an increase in the intensities in the central 
regions of the strong Fraunhofer lines (for example, the Ca I1 H and K lines). 

The L line profile in the solar spectrum has been determined through rock-
CY 

e t  observations. It is depicted in Fig. 19a. A narrow absorption line, arising 
because of radiation absorw 
tion by neutral hydrogen along 
the path from the Sun to the 
rocket. is seen in the center 
of the emission line. The 

CY 
fact that the upper layers of 

1H5.67 A 2795.52A' 
inesce in  the L line because 

a! 
. - L  

-1 0 1 - I  0 1 4 0 of their reemission of the so-

absorption line, we can state 

pgq- the earth 's  atmosphere lum

la r  radiation absorbed in this 
line is confirmation of this.Figure 19. Digressing from this narrow /202 

that the L line in  the solar spectrum has a broad dip in the central portion.
a! 

The profiles of the 2796 Mg 11 and 3934 Ca 11 emission lines, very similar 
to the L line profile, are presented in Figs. 19b and c. A spectrogram with the 

CY 

h 2796 line has been obtained through rocket observations. This emission line is 
superimposed on a wide absorption line. The h 3934 emission line occurs at the 
very bottom of the very broad K absorption line and is an example of the influence 
of the chromosphere on the Fraunhofer spectra, which we discussed above. The 
L emission line is also superimposed on a broad absorption line, but the profilea 

of the latter is difficult to determine because of the weakness of the continuous 
spectrum. 

Many lines of the ultraviolet solar spectrum arise in the transition region 
between the chromosphere and corona, the temperature in which varies from 
about 10,000' to 1million degrees. The theoreticalemissionof this region is a 
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very interesting problem of solar physics. It is obvious that the atoms of any ele
ment in a specific ionization state exist preferentially only in a very narrow layer 
of this region, since at a lower temperature the atoms exist in the preceding ion
ization state, and at  a higher temperature-in the subsequent. Therefore a severe 
emission stratification (i.e. , layering) exists in the transition region. Of the 
transition region models that have been proposed, let  us mention the model of 
G. S. Ivanov-Kholodnyy and G. M. Nikol'skiy [15]. In the construction of their 
model these authors took into consideration not only data on the ultraviolet solar 
spectrum, but also the results of solar radio emission observations. Data on the 
radiation of the earth's ionosphere were also used since the ionization condition 
of the upper layers of the earth's atmosphere depends heavily on the ultraviolet 
solar radiation, 

6 .  'I'he L line in the solar spectrum. Above, we presented some observa- /203
CY 

tiom1 data on the Lo! line. Let us now concern ourselves with an interpretation 
of these data. 

The L emission line arises in the upper layers of the chromosphere where 
CY 

the temperature increases with height. In these layers the atoms are excited by 
electron impact and spectral line quanta a re  formed through subsequent spontan
eous transitions. In most cases, however, the L quanta cannot escape unhind-

CY 

ered from the chromosphere since the optical depth of the chromosphere layers 
', at the central frequency of this line is considerable. Therefore diffusion of the 

L a radiation occurs in the chromosphere. A s  explained above (in Section ll), 
this diffusion is accompanied by a frequency redistribution of the radiation with
in the line. During such a process, most of the quanta escape outside in portions 
of the line far from the center, for  which the optical depth is relatively small. In 
the central portions of the line, however, a small fraction of the quanta escape to 
the outside because of strong absorption. Consequently, the emission line must 
have a dip in the center. Just such a dip is observed for the L

o! 
line of the solar 

spectrum. 

We can make use of Eqs. (11 .9)  and (11.l o ) ,  with some changes, to deter
mine the theoretical La line profiles. These equations describe radiation diffus

ion in a spectral line with complete frequency redistribution for the formation of 
line quanta from the continuous spectrum. The absorption line contour in the stel
lar spectrum is determined by solving these equations. In order to take into con
sideration the formation of line quanta because of collisions, i t  is necessary to 
introduce some additional term into Eq. (11.10). Then we obtain an absorption 
line with enhanced intensity in the central portion or  even an absorption line with 
an emission line superimposed on it. Such theoretical profiles will obviously be 
applicable not only to the L line but also to other resonance lines of the solar 

CY 
spectrum (in particular, to the Ca 11 H and K lines). 

For simplicity let us  determine only the profile of an emission line which is 
superimposed on an absorption line. In the case given, the free term of the inte
gral  equation (11.14), determining the function S(T),is caused by collisions only. 
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Since this mechanism of line excitation weakens with an increase in optical depth, 
then let us assume that 

. g ( ~ )=Ce-"', (16.35) 

where C and m are constants. The radiation intensity of frequency v within a line, 

leaving at an angle of arccos p to the normal, is expressed in terms of the func

tion S(T)  by the formula /204 


(16.36) 

where 7 
V 

is the ratio of the line absorption coefficient to the continuous spectrum 

absorption coefficient and x = (7 f l ) /p  (see Eq. [ll.11)for comparison]. In the 
V 

case, however, where g(7) is an exponential, there is no need to determine the 
function S(T)  for finding the quantity Iv(O, p). On the basis of Eq. (3 .19)  we have 

__ . .  (16.37) 

where the function q ( z )  is determined by Eq. (11.27). 

Equation (11.27) can easily be solved by numerical methods. V. V. Ivanov 
[171 did this for the Doppler line absorption coefficient, neglecting the continuous 
spectrum absorption. The emission line profiles were  determined from Eq. (16.37) 
with the aid of the table obtained for the function q ( z ) .  Some results for the center 
of the disk ( p  = 1)are presented in Fig. 20 as an example. Along the abscissa 
axis is plotted the distance from the center of the disk in Doppler widths; along 
the ordinate axis-the intensity relative to the central intensity. The profiles are 
plotted for values of the quantity m/qvo equal to coy 2 ,  0.5, 0.3, 0.2 and 0.15, 

with the line being broader, the smaller this quantity. We see that the theoretical 
emission line profiles are very similar to the L line profiles obtained from ob

a!servations (see Fig. 19a). 

The theory also gives the profiles of emission lines a t  different distances /205
from the center of the disk. It is found that the dip in the center of the line be
comes deeper as one goes from the center of the disk to the edge, and the sep
aration between the maxima increases. The La! line profile a t  the solar disk 
changes in approximately the same way as in observations. 

A comparison of theory with observations makes it possible to determine 
the values of the parameters C and m. This, in turn, allows one to find the elec
tron density and temperature distribution in the upper chromosphere layers, upon 
which these parameters depend. It must, however, be borne in mind that in the 
derivation of Eq. (16.37) the profile of the absorption coefficient in the 
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chromosphere was assumed to be con
stant. In reality, however, it varies 
with depth because of a change in tem
perature. 

A more detailed theory of reson
ance line formation in the solar spec
trum has been developed by Jefferies 
and Thomas (see [ll]). They have tak
en the various factors, influencing the 
population of the second atomic level, 
into consideration. However, the radi
ative transfer equation was solved ap
proximately. 

17. Corona 
-3 -2 -I u I 2 3

v-Yo 
1. Radiation of the corona. TheAS corona represents the outermost portion 

of the solar atmosphere. It is very dif-Figure 20. ficult to study the corona since itsbright
ness is much less than the skybrightness 
caused by the scattering of sunlight in the 

earth's atmosphere. Therefore coronal observations must be made during solar 
eclipses when the radiation of the solar disk is prevented from reaching the earth's 
atmosphere. To avoid scattered sky light, coronal observations a re  also made in 
high-altitude observatories with the aid of special instruments-coronagraphs, Be
cause of the irregularityand short durationof eclipses, the second method of cor
onal observation yields more information about it than the first. 

Observations show that the amount of energy, emitted by the corona, amounts 
to about one millionth of the Sun's luminosity. The coronal emission undergoes 
marked variations with time (increasing in years of maximum solar activity and 
decreasing in years of minimum activity). 

The coronal spectrum in the visible portion of the spectrum differs sharply
from the spectrum of the chromosphere lying below. As  we recall, the chromo
sphere spectrum consists of bright lines, which are reversed Fraunhofer lines 
(with the exception of the helium lines). At  the same time the corona has a con
tinous spectrum with Fraunhofer absorption lines. In addition, bright lines a re  
also present in the coronal spectrum, but they a re  not exactly the lines in 
the chromosphere spectrum. 

More precisely, the coronal emission can be divided into three components. /206
The first component (K component) has a continuous spectrum with some number 
of very diffuse absorption lines corresponding to the strongest Fraunhofer lines 
in the spectrum of the solar disk. This emission is polarized. The second com
ponent (F component) has a continuous spectrum with Fraunhofer lines which do 
not differ significantly from the spectrum of the solar disk. This emission is 
nearly unpolarized. The third component (E component) has an emission line 
spectrum. The total energy, emitted by the corona in lines, amounts to about 
1% of the energy leaving i t  in the continuous spectrum. 
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Curves, characterizing the relative intensities of each of the coronal emis
sion components at different distances from the edge o� the solar disk, are pre

'-.Clear hazy sky--_ . _  - 

o	 r z i l 

Figure 21. 

sented in Fig. 21, taken from Van d e  
Hulst's paper [l]. The sky brightness 
of sun in three cases is denoted by the 
dashes in this same figure for a com
parison. The first of these corresponds 
to a hazy sky, i. e. , to the earth's at
mosphere containing both molecules as 
well as coarse particles (the scattering 
indicatrices of the latter are consider
ably elongated in the forward direction 
so that a bright aureole is observed near 
the Sun). The second case corresponds 
to a blue sky, i. e. , to an atmosphere 
containing only molecules. In the third 
case the dashed line gives the skybright
ness during the total phase of an eclipse. 
The brightness is caused by the scatter
ing of light, entering the lunar shadow 
region from the portion of the atmosphere 
illuminatsd by the Sun. 

As  Allen and Van de  Hulst (see [161) 
have shown, the F component of the solar 

coronal emission does not actually arise in the corona itself, but in the space be
tween Sun and Earth. This component is the result of the scattering of sunlight 
by particles of interplanetary dust, i. e. , it has the same character as  the zodi
acal light. The high brightness of the F component is explained by the consider
able forward elongation of the scattering indicatrix of dust particles. 

Thus, the F component must be excluded from the observed coronal emis
sion to determine the true coronal emission. From now on we will say nothing 
about this fictitious component of the coronal emission and we will consider only 
its true components K and E. 

2 .  Origin of the continuous spectrum. The explanation of the origin of the 
continuous spectrum of the corona (more precisely, its K component) consists of 
the fact that it ar ises  as the result of the scattering of the solar photosphere rad
iation by the free electrons of the corona. Let us introduce some facts which 
confirm the validity of this explanation. 

1. The energy distribution of the coronal spectrum does not differ from 
the energy distribution in the solar spectrum. The coronal color and the Sun's 
color are identical, This should be the situation in the case of light scattering 
by free electrons because of the wavelength independence of the scattering coef
ficient. Some discrepancies between various observational da ta  on the coronal 
spectrum and color are caused by viewing difficulties. 

2. The coronal emission is polarized in accordance with the law of light 
polarization due to electron scattering (formulated in Section 7) .  Observations 
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yield the degree of coronal light polarization p at different distances r from the 
center of the solar disk (with an increase in r it increases to approximately a 
value of p = 40% at a distance of r = 1.5 ray and then decreases). As is known, 
the theoretical value of the degree of polarization of the radiation, scattered by 
a volume element, is equal to 

sin2y 
p =  i+co$y  ' (17.1) 

where y is the angle between the directions of the incident and scattered radia
tion. However, radiation from different points of the photosphere strike a given
volume element of the corona and each incident beam will have its own scatter
ing angle y and scattering plane. Therefore the expression for the degree of 
light polarization, scattered by a volume element of the corona, turns out to be 
quite complex. To determine the quantity p(r), however, the radiation from all 
volume elements along the line of sight must be integrated. Such calculations 
lead to polarization values p(r) that agree with observed values of this quantity 
(if, of course, the unpolarized F component is excluded from the observed cor
onal radiation). 

3. Only a very small number of highly diffuse Fraunhofer lines are pres
ent in the coronal spectrum. This is explained by the Doppler line broadening,
occurring during the scattering of sunlight by the rapidly moving free electrons /208 
of the corona. If we denote byr: the relative residual line intensity in the so
lar spectrum and by r

V 
the analogous quantity for the corona, then one can write 

the approximation 

(17.2) 

where 

(17.3) 


and Te is the electron temperature of the corona. Since the electron mass m is 
very small, then the quantity A vD turns out to be very large. Therefore the nar
row and weak Fraunhofer lines are so smeared that they become invisible. Only 
the very strong Fraunhofer lines (for example, H and K of ionized calcium), al
though very diffuse, are observed in the coronal spectrum. It should be noted 
that a large number of Fraunhofer lines are present in the F component of the 
coronal radiation spectrum, arising through light scattering by dust particles, 
since the velocities of the dust particles are very low. 

The facts that have been enumerated attest without doubt to the fact that the 
continuous coronal spectrum is formed because of the scattering of light, coming 
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from the solar disk, by the free electrons of the corona. The following import
ant problem arises, however: what abrupt change in the spectral character is 
caused by the transition from the chromosphere to the corona, i. e. , why is the 
bright-line spectrum of the chromosphere converted into the continuous coronal 
spectrum? The answer, of course, to this problem is not that there are many
free electrons in the corona, but that there are few in the chromosphere. In 
reality, with increasing distance from the solar surface the material density (in
cluding the f r ee  electron density) decreases rapidly. It is precisely this decrease 
which is the basic explanation of the spectral change that has been mentioned. The 
effect of an increase in the role of electron scattering with a decrease in density 
has already been mentioned in  Section 5, with the photospheres of supergiantstars 
being introduced as an example. 

In order  to illustrate what has been said, let us write the expressions for the 
continuous spectrum and line emission coefficients. The continuous spectrum vol
ume emission coefficient, caused by light scattering by free electrons, is given 
by the formula 

(17.4) 

where n e is the free electron density, (T0 is the scattering coe�ficient calculated /209 

for one electron, and I is the intensity of the emission coming from the photo-
V 

sphere. On the other hand, the line volume emission coefficient, corresponding 
to the transition k - i, is equal to 

(17.5) 

where % is the number of atoms in the k-th state in 1 cm3, Aki is the Einstein 

spontaneous transition coefficient and A vik is the line width. The quantity %, 
by analogy with Eq. (5.7), can be represented in the form 

(17.6) 

where the coefficient bk shows by how much the value of the quantity nl(nen+ dif

fers from its value in the presence of thermodynamic equilibrium with tempera
ture Te. 

Substituting (17.6) into (17.5), we see that the line emission coefficient E 
+ V 

is proportional to nen , i. e. , the square of the density (if the atoms are predom
inantly in an ionized state). The continuous spectrum emission coefficient E 

V Y  
however, is proportional to ne' i. e. , the first power of the density. Therefore 

189 



IIIII I 1  I l l  I1 II I Ill1 I I 


in  the case of a low gas density, E 
V 
' is a small quantity of the first  order, and 

E -a small quantity of the second order. Consequently, a t  a sufficiently low 
V 

density the line emission coefficient will be less than the continuous spectrum 
emission coefficient, caused by scattering by free electrons. 

For the ratio of the quantities and E 
V 

we have 

ev'	--n+ -p. (17.7) 
ev 

Since the density p decreases with increasing distance from the solar surface, 
then the ratio E v ' / E  v also decreases. At a relatively high density (in the chrom

osphere) E v ' / Eu > .  1, i. e., strong lines a re  seen on a relatively weak continuous 

background. At a relatively low density (in the corona) E v ' / E  u << 1, i. e. , a con

tinuous spectrum is observed and almost no lines (with some exceptions). 

In reality the ratio E v ' / E  v depends not only on the density but also on the 

temperature. It also depends on the atomic excitation mechanism, by which 
the value of the coefficient bk is determined. Therefore the variation of the 

quantity E v f / ~ Vwith the distance r will be different for different lines. Appro

priate calculations can be made for each line with the aid of Eqs. (17.4)-(17.6). 
This will be done below for the hydrogen Balmer lines. 

3. Electron density. Since the basic mechanism of the coronal emission 
is light scattering by free electrons, then the distribution of free electrons in 
the corona can be found from the measured surface brightness. In principle, 
this problem is solved in the same manner as the problem of determining the 
distribution of the emitting atoms with height in the chromosphere, considered 
above. 

We will assume that the corona possesses spherical symmetry (although 
in reality this is not exactly true). Let E ( r ' )  be the volume emission coeffi
cient a t  a distance r' from the center of the Sun and I(r)be the intensity of the 
emission coming from the corona to the observer at a distance r from the cen
ter of the disk (see Fig. 18). These quantities are interrelated by the equation 

4-

I ( r ) =  5 E ( f ) d S ,  (17.8) 
d 


where s = Af2-r2. This equation can also be rewritten in the form 

(17.9) 

/210 
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Since the quantity I(r)is known for observations, then, solving Eq. (17.9) 
(the Abel equation), we can find the emission coefficient E @ ) .  In practice, one 
usually makes use of the fact that if 

C
e p )  =-

P' (17.10) 

where C and m are constant, then, as follows from (17.9), 

(17.11) 

On this basis. assuming that E ( r )  is the sum of terms of the form of (17.10). the 
constants C and m are  chosen so that the sum of terms of the form (17.11) 'rep
resents the specified function I(r) sufficiently well. 

If the emission coefficient E ( r )  is found, then, using Eq. (17.4), we can /211 
determine the electron density ne(r). Assuming that the intensity Io of the pho

tosphere emission does not depend on direction, we obtain 

(17.12) 

where R is the radius of the Sun. 

For  a more rigorous solution of the problem of determining the electron 
density in the corona, the darkening of the solar disk from center to edge must 
be taken into account, Moreover, consideration must be given to the fact that 
the free electrons do not scatter the radiation isotropically but with a scattering 

indicatrix of x(y) = 3/4(1 + cos 2y) .  An exact solution of the problem in this case 
has been derived by A. F. Bogorodskiy and N. A. Khinkulov. 

The degree of coronal radiation polarization p(r) can be calculated after 
determinion of the electron density ne@) (which has already been mentioned 

above). The agreement of the calculated and observed values of p(r)  serves as 
a control on the validity of the determination of ne(r). 

Let us present some results of a determination of the electron density in 
the corona. Baumbach (by considering the electron scattering to be isotropic) 
derived the following approximate formula for the quantity ne( r): 

(17.13) 
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A detailed investigation of the coronal structure has been made by Van de 
Hulst (see P I ) .  The anisotropy of the electron scattering, the exclusion of the 
F component, and the polarization of the coronal radiation were taken into con
sideration in his work. The results obtained by Van de Hulst a r e  presented in 
Table 20, containing values of the electron density both for the corona during 
maximum solar activity and for the corona during minimum solar activity. The 
"maximum" corona is assumed to be spherically symmetric, and for the "min
imum" corona separate values of ne are given for the equatorial and polar regions. 

TABLE 20. ELECTRON DENSITY IN THE CORONA 

_ _ _ _ _ - .  -

ItMax' I lrMinrrcorona 9 
'IR corona 

1.00 403 
1.03 316 
1.06 235 
1.1 160 
1 2  70.8 
193 37.6 


- __I_

rrMinlrcorona I 

14,8

7.11 
2,81
0,665
0,313 

0,090 

- .  

Commas represent decimal points. 

We can also determine the total number of free electrons in the corona for 
which its luminosity is adequately lmown. If E is the emission coefficient, then 
the coronal luminosity is equal to 

LA =4 x  $ E dv, (17.14) 

where the integration is carried out over the entire coronal volume. Since the /212 
coronal luminosity is determined primarily by the emission of its inner portions 
(for which r w R), then on the basis of Eq. (17.12) one can write approximately 

4 
e ( r )=5n,(r)aozo. (17.15) 

The substitution of (17.15) into (17.14) gives 

Lh =2nad&e, (17.16) 

where Ne = nedV. 

On the other hand, the luminosity of the Sun is equal to 

(17.17) 
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Therefore for  the ratio of the coronal luminosity to the solar luminosity we 
obtain 

LA afle 

Lo 2nR2' (17.18)  

Equation (17.18)  makes it possible to determine the total number of free 
electrons Ne in the corona if the quantity L d L o  is known from observations. A s  

already mentioned LI(L0 = 10-6 . Therefore we find: Ne =5 . 1 040. 
Incidentally, from this it follows that the number of free electrons of the 

corona, present in  one square centimeter of the solar surface, is equal to 

Ne cu 10'8. (17 .19)
-4nR2 

Multiplying this number by the scattering coefficient, calculated for  one free /2 13 
electron, we obtain an approximate value for  the optical thickness of the corona, 

-6
which is equal to T~ z 10 . Such a result should be expected since the approx
imate equality Lk M i-OL must be satisfied. 

4. Coronal lines. About 30 emission lines are present in the visible por
tion of the coronal gpectrum. The brightest of thes? i s  the "green" line with a 
wavelength of 5303A. The lines h 6375 5nd h 6702 A in the red portio? of the 
spectrum, h 7892, h 10747 and h 10798 A-in the infrared and h 3388 A-in the 
ultraviolet are also very strong lines. The relative intensities of the lines are 
ditferent in different portions of the corona. The lines are fairly broad-about 
1 A. 

For a long time the origin of the coronal lines was an enigma in astro
physics. Finally, in 1939 Grotian observed that the frequencies of two coronal 
lines coincide with the frequencies of the forbidden lines arising during transi
tions between sublevels of the ground state of Fe X and Fe XI ions. Then Edlen 
found the same agreement for the frequencies of two other coronal lines and lines 
of the Ca  XI1 and Ca XIII ions. It should be noted that the forbidden lines of these 
ions have not been observed in the laboratory. The frequencies of these lines 
were determined from the term scheme constructed from the allowed lines, ob
served in the laboratory, lying in the ultraviolet portion of the spectrum. 

Later, Edlen 1161 identified most of the lines in the coronal spectrum. It 
was found that all of them are formed through forbidden transitions between sub-
levels of the first state of highly ionized atoms (iron, calcium, nickel and argon). 
A list of the identified coronal lines, together with different information about 
them, is given in  Table 21. 

Calculations show that the highly ionized atoms of other elements do not 
have lines in the visible portion of the spectrum or their lines are too weak and 
be observed on the background of the continuous coronal spectrum. However, 
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TABLE 21. 

Observed rel
ative intensitj 
__-
from 

3rotiai 

CORONAL EMISSION LINES 
~ 

El

0 23 .A 

Ion :&*z3 a, 
s &.5-

Ca XI1 488 3.72 589 
Fe XI11 87 I 5.96 325
Ni XVI 193 3146 455 ' 

N i  XI11 18 5,82 350
Fe XI 9.5 4.68 261 
ca XI11 3i9 3.03 655
Ni XI1 237 2.93 318 
Ar XIV 108 2.84 682 
N i  XI11 157 2.42 350 
Fe XIV 60 234 355
Arx 105 224 421 ca xv 95 2,i8 814
Fe X 69 1.94 233
Ni X V  57 1.85 422 
Fe XV 390 
Fe XI 44 1;57 261 
Ni X V  22 3.39 422 
Fe XI11 14 1 ,15 325 
Fe XI11 9.7 2.30 325 

. -

Commas represent decimal points. 

some lines a re  present that a r e  at the limit of visibility and in the future some 
method may be found to make i t  possible to detect them. 

This identification of the coronal lines, however, immediately raises two 
questions: 1)what causes the existence of multiply-ionized atoms in the corona? 
2 )  why a re  forbidden lines observed in the coronal spectrum? The answer to 
the first of these questions will be given below. Now, let us provide a brief an
swer to the second question (postponing a detailed consideration of the problem 
of the appearance of forbidden lines in the spectra of celestial bodies until Chap
terv, devoted to gas nebulae). 

As is known, the Einstein spontaneous transition coefficients for the al
lowed lines a re  of the order of 108 sec-1. For the forbidden lines, however, 
these coefficients a r e  much smaller. For example, they are of the order 
of 10-10 3 sec -',as seen from the table, for the forbidden lines in the coronal 
spectrum (although the exclusion in these cases is not very strong). Because of 
the smallness of the probabilities of forbidden transitions, special conditions 
are necessary in order that the forbidden lines could become fairly intense. 

To ascertain these conditions, let us f i r s t  of all note that if both forbidden, 
as well as allowed transitions, are possible from a given state, then the former 
occur much less frequently than the latter, and the forbidden line is much weaker 
than the allowed. Consequently, the forbidden lines can become relatively 
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intense only when the upper state is metastable, i. e., there a re  no downward 
transitions from it except forbidden. 

However, unlike the usual excited states in which the atom exists for a time 

of the orderof sec, it can exist in the metastable state much longer. There

fore to achieve a spontaneous transition from a metastable state it is necessary 

that it not undergo external excitation over very long periods.of time. In partic- /215 

ular, the atom must notundergo frequent encounters with free electrons since the 

latter can transfer it downward from the metastable state without the emission of 

radiation of a forbidden line through a collision of the second kind. The atom 

must not be subjected to a strong interaction with radiation since the absorption 

of it canexcite the atom upward from the metastable state. Thus, for the appear

ance of relatively intense forbidden lines in the spectrum of any object it is nec

essary that the matter density and the radiation density in i t  be quite low. 


The very existence of forbidden lines in the coronal spectrum indicates that 
these conditions are fulfilled in the corona. Calculations confirm this. As we 
have seen, the electron density in the corona is quite low, and collisions do not 
prevent spontaneous transitions from metastable states (although the values of 
n in the corona a re  several orders of magnitude greater than in nebulae, the e 
transition probabilities for the coronal lines a re  relatively high). Moreover, 
the condition with regard to the radiation density is also satisfied in the corona. 
For the ions, giving the coronal lines, to transfer upward from their metastable 
states, radiation in the far  ultraviolet portion of the spectrum is required. How
ever, the density of this radiation is very low in the solar atmosphere. 

5. Corona temperature. Right after the identification of the coronal lines 
an important discovery was made in solar physics: several facts become known 
which attested to an extremely high coronal kinetic temperature-of the order of 
a million degrees. Let us now present the most significant of these facts. 

1. Intense ionization of atoms in the corona. This fact should be placed 
first. If the corona temperature were not so high, the existence of multiply ion
ized atoms (such as Fe X, Ca XII, etc. ) in i t  would be completely incomprehen

sible. At a temperature of the order of 106 degrees, however, intense ionization 
of atoms is caused by electron collisions (see below). 

2. Blurring of absorption lines. We have already stated that Fraunhofer 
lines, with the exception of some severely diffuse ones, a re  not seen in the cor
onal spectrum, arising from the scattering of solar radiation by free electrons. 
This is explained by the Doppler broadening of the lines because of the thermal 
motion of the free  electrons. If, however, it is assumed that the corona tem
perature is equal to the temperature of the reversing layer, i. e., 5000°, then 1216 
the absorption line profiles calculated from Eq. (17.2) a re  appreciably narrow
er and sharper than the observed profiles. For the theory to agree with obser
vations, it is necessary to assume that the temperature of the electron gas of 
the corona is no lower than 600,000". 

3. Emission line widths. The measured profiles of the emission lines in 
the coronal spectrum are well represented by curves corresponding to a Maxwellian 
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velocity distribution of the atoms. This makes it possiple to find the average 
atom velocity from the line width. For the green h 5303 A line, belonging to Fe 
XIV, the width is about 1 which means an average atom velocity of about 25 

6km/sec. From this a value of about 2' 10 degrees is obtained for the kinetic 
temperature. 

4. Absence of Balmer lines. As already mentioned, the emission lines in 
the coronal spectrum must be weak on the continuous spectrum background. How
ever, the hydrogen in the outer layers of the Sun is so abundant that the Balmer 
lines would be observed if the corona temperature were low. The absence of these 
lines in the coronal spectrum, however, attests to its high temperature. The 
strong dependence of the intensity of the Balmer lines on the temperature is ex
plained by the fact that these lines arise as the result of recombinations, and the 

recombination probability is approximately proportional to Te-3/2. Consequently, 
for Te = 106 degrees the line intensity should be approximately 1000 times less 
than for Te = 104 degrees. The ratio of the intensities of the Balmer lines to the 
intensity of the continuous spectrum can be found with the aid of Eqs. (17.4)
(17.6). Such calculations have shown that the Ha line will not be observable in 
the coronal spectrum if T > 100,000" (see [17]).e 

5. Density gradient in the corona. As seen from Eq. (17.13) and Table 
20, the density in the corona does not decrease very rapidly with an increase in 
r. In any case, this decrease occurs much more slowly than according to the 
barometric height formula with a temperature of 5000". On this basis a hypo
thesis was put forth concerning the fact that the corona is not in hydrostatic equi
librium, and is sustained by turbulent motions. Such a hypothesis (not confirm
ed by observations), however, is not necessary if the corona temperature is as
sumed to be very high. Let us take the generalized barometric height formula 

(17.20) 

differing from the usual barometric height formula (16.31) by the fact that the 
dependence of the gravitational acceleration on r is taken into consideration in /217 
it. Here G is the gravitational constant, M is the Sun's mass, R is its radius, 
mH is the mass of a hydrogen atom, p is the mean molecular weight. It is easy 

to verify that Eq. (17.20) is a good representation of the observational data on 
the electron density, presented in Table 20, i. e., lg n and l/r a re  interrelated e 
by a linear function. For agreement between the theoretical and observed values 
of the angular coefficient of this function, the corona temperature must assume 
a value of T 1.4.10 6 degrees (it is derived for p = 0.69, i. e . ,  in the case when 
the ratio of the number of hydrogen atoms to the number of helium atoms in the 
corona is equal to 5, just as in the chromosphere). Consequently, one can as
sume that the corona exists in hydrostatic equilibrium for the high temperature 
that has been cited. 
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6 .  Intensity of the solar radio emission. As  we shall see in the following 
section, the main portion of the long-wavelength solar radio emission comes 
from the corona. From the measured intensities of this radio emission the 
electron temperature of the corona can be determined; i t  turns out to be of the 
order of 700,000". 

Thus one must assume that a corona temperature of the order of a million 
degrees is a well-established fact. However, the important questions of the 
cause of such a high corona temperature is not completely clear at present.
Some hypotheses have been expressed to explain the corona heating. One of them 
proposes that the corona is heated because of the mechanical energy of the mat
te r  (in particular, of prominences) entering it from the chromosphere. Accord
ing to another hypothesis corona heating occurs through the evolution of the Jou
lian heat of the electric currents created by the magnetic fields. Some authors 
have considered the entry of particles of interstellar matter (accretions) into the 
corona as a possible mechanism for  corona heating. However, the most probable 
cause of the high corona temperature must be considered to be the existence of 
acoustic and magnetoacoustic waves coming from the photosphere. These waves 
are produced by convection and they travel through the upper photosphere and the 
lower chromosphere almost without loss. In the upper chromosphere and corona, 
however, they are converted, because of the reduction in density, into shock 
waves, the energy of which dissipates rapidly and changes into heat. Since the 
corona temperature that has been determined is established as a result of equi
librium between heating and cooling, corona cooling must also be considered in 
the theoretical determination of the temperature. It occurs because of the spec
t ra l  line emission of the corona, because of the transfer of coronal energy to 
the cooler chromosphere by thermal conduction, because of the escape of fast 
particles, carrying some energy, from it. Calculations show that the energy 
loss of the corona is relatively small. Because of this, the hypothetical corona 
heating mechanisms must not be very energetic. 

In the construction of a corona theory, the mass balance must be investi
gated along with a consideration of the energy balance. Material enters the cor
ona from the chromosphere and this process is compensated by the outflow of 
material from the corona. The dispersion of particles from a stationary corona 
has been investigated previously; now, however, let  us assume that the entire 
corona is spreading out. Radar studies of the Sun have established an outward 
movement of gas in the corona with velocities increasing from two to several 
tens of km/sec. This gas movement leads to the appearance of a "solar wind" 
in interplanetary space. 

It should be noted again that the correct corona theory must explain i ts  
observed inhomogeneity. As observations have sh$wn, the grzen and red lines 
in the coronal spectrum (with wavelengths of 5303 A and 6374 A, respectively) 
arise in different regions of the corona. Since the first of these lines belong to 
Fe XIV, and the second to Fe X, then i t  is reasonable to assume that the llgreenll 
region of the corona is appreciably hotter than the llredll. It appears that the 
corona temperature is below average in the polar region and above average over 
spots and faculae. Also of considerable interest for corona theory are its var
ious structural formations: streamers,  "arches", l'necksl', etc. The stability 
of these formations is apparently associated with the existence of magnetic fields 
in the corona. 
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6. Atomic ionization and excitation. We have already mentioned that the 
high corona temperature makes it possible to understand the existence of multi
ply ionized atoms in it. To determine, however, the degree of atomic ionization 
in the corona, it is necessary to use the conventional Saha ionization formula 
since thermodynamic equilibrium does not exist in the corona. In such cases the 
degree of atomic ionization is found by considering those elementary processes, 
which lead to ionization, and the opposite processes, i. e. , recombinations. Be
low (in Chapters V, VI and VII) formulas will be derived for ionization in the ab
sence of thermodynamic equilibrium for the case of nebulae and the envelopes of 
nonstationary stars. Now, however, let us consider rather briefly the question 
of the degree of atomic ionization for the coronal case (although it  must be borne 
in mind that the ionization formulas for  the nebular and coronal cases are vastly 
different from each other because of differences in the ionization mechanism). 

Let us first consider for simplicity the ionization of hydrogen atoms. Just 
as before, let n1' n+ and ne be the number of neutral atoms (in the first  state), 

3the number of protons and the number of free electrons in 1cm , respectively. 
Atomic ionization can occur both through collisions (among which collisions with /219
free electrons play the largest role), and under the influence of radiation. The 

number of these processes, occurring in 1cm 3 in 1sec, we will denote by n n Bl e  
and n1D, respectively. The reverse processes a re  recombinations through triple 
collisions (without radiation) and recombinations associated with radiation (both 
spontaneous, as well as stimulated). We will denote the number of recombi

2 +  +nations by ne n A and ne" Cy respectively. In the stationary state the number 

of ionizations is equal to the number of recombinations, i. e. , the equality 

nln.23 fniD =.ne2n+A +na+C. (17.21) 

is satisfied. 

In the presence of thermodynamic equilibrium each forward process is com
pensated by a reverse process. In particular, the number of ionizations through 
collisions is equal to the number of recombinations through collisions, i. e. , 

ntB =nen+A. (17.22) 

Analogously, the number of ionizations due to the influence of radiation is equal 
to the number of recombinations associated with radiation, i. e .  , 

niD =n,n+C. (17.23) 

Equations (17.22) and (17.23) change over into the usual ionization formula (5.5) 
if the values of the coefficients A, By C and D for the case of thermodynamic
equilibrium are substituted into them (more precisely, for a Maxwellian distri
bution of free electron velocities and for a Planckian radiation density). 

In the absence, however, of thermodynamic equilibrium the degree of atomic 
ionization is determined from Eq. (17.21) in which each term must be determined 
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for specific conditions. In the outer layers of stars and in nebulae, because of 
the low density of matter, recombinations through triple collisions occur much 
less frequently than recombinations associated with radiation, i. e., 

n-4 <C. (17.24) 

With regard to ionizations, they generally occur both through collisions and due 
to the effect of radiation. As we will see below, in nebulae ionization is caused 
by the radiation of hot stars. In this case the degree of atomic ionization is de
termined by Eq. (17.23) with an appropriate (different from Planckian) radiation 
density. In the corona, however, the ultraviolet radiation density is very small 
and it plays no role in the ionization of atoms (with the exception of the f i rs t  ion
ization of metals). It is easy to understand that for an enormous kinetic corona /220 
temperature, the ionization of atoms in it is caused by electron collision. In the 
given case, from Eq. (17.21) we obtain 

(17.25) 

It is important to note that the degree of ionization in the corona does not depend 
on the density of matter (but depends only on the electron temperature Te). 

A theory of atomic ionization in the corona has been developed by I. S. Shk
lovskiy [17]. Calculations made by him from Eq. (17.25) for hydrogen led to 

values of the quantity nt/nl of the order of 106 for T N 105 degrees, and of the 

order of 107 for T M 106 degrees (when n N 108 cm e-3 ). These values of the 
+ e e 

quantity n /n 1 are about a million times smaller than its value in the case of 

thermodynamic equilibrium for the same temperatures and densities. 

The determination of the relative numbers of metal atoms in different ion
ization states can also be done with Eq. (17.25) (in which, now, n 

+1
must be un

derstood to be the atom density in a given ionization state, and n -in the subse
sequent state). In this case, however, approximate expressions must be used 
for  the coefficients B and C since quantum mechanical calculations of these quan
tities a re  very difficult. Values of the relative numbers of iron atoms in differ
ent ionization states, obtained by I. s. Shklovskiy for different electron tempera- /22 1 
atures, a r e  presented in Table 22 as an example. 

We see that for  a given electron temperature the number of atoms first in
creases with an increase in the ionization state, and then decreases. For exam
ple, for Te = 800,000" the maximum number of iron atoms exists in the Fe XI1 
state. 

According to observations, the Fe X-Fe XV lines exist in the coronal spec
trum, with the line radiation of the different atoms coming from different regions 
of the corona. On the basis of the table, one can say that the corona temperature 
must be of the order of a million degrees, with it being different in different re
gions. For example, the coronal region, emitting in the Fe X-Fe XI lines, must 
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TABLE 22. IONIZATION OF IRON IN TKE CORONA 

~ 

T, -1W 0.8 

FiX 
Fe IX 

i . i -
),092'0,83 1,6 299 

. 

6.0 13 30 -
Fe XI 
Fe X - 0.29 0,TI  1 9 1  2.7 8,O 12 22 
Fe XI1 
Fe X I  

~. -. 0,lO 0,m 0,52 1,I 3.5 7,2 12 
Fe XI'II 
Fe XI1 - 0,030 0,10 0,29 0,47 1,4 3,4 1,2 
Fe XI\;_--
Fe XI 11- - 0,010 0,039 0,13 0,31 O,C6 2 , O  4 , 3  
Fe XV 
Fe XIV 0,047 0.12 0.40 0,82 1.7 

.. 

Commas represent decimal points. 

have a temperature of the order of 600, O O O " ,  and the region emitting in the Fe 
XIII-Fe XIV lines, a temperature of the order of 1,200,000".  Lines of atoms, 
existing in ionization states that are very far apart, are sometimes seen in the 
spectrum of one and the same point of the corona. This can be explained by the 
fact  that the line of sight traverses regions with different temperatures. 

After consideration of the problem of atom ionization in the corona let us 
turn to the question of ion excitation. For the present we will only speak of the 
excitation of those levels of the ionic ground state, the transitions from which 
give rise to the observed forbidden lines in the coronal spectrum. The excita
tion of these levels occurs by two paths: 1)through collisions with free  electrons, 
2 )  through the absorption of radiation coming from the photosphere (the second 
excitation mechanism plays some role in the outer portions of the corona). The 
return of the ion to the lower level occurs both through spontaneous transitions 
and through collisions of the second kind. From the condition that the number 
of ions in each of the levels is constant, one can find the ratio of the number of 
ions in the k-th level to the number of ions in the first level, i. e. , the quantity
nl(nlo We will not dwell on these calculations here since the distribution of 

ionic levels in  gas nebulae, which will be discussed in detail in Section 24, is 
determined in the same manner. 

Knowing the ratio %/nl allows one to convert from the concentration of 

ions in the excited level nk (found from the measured intensity of the emission 
line, as in  the case of the chromosphere) to the concentration of ions in the f i r s t  
level n1' Summing the numbers n1 for  all ionization states allows one to deter
mine the total concentration of atoms of a given element. After dividing this con
centration by ne' we obtain the ratio of the number of atoms of the element being 

considered to the number of hydrogen atoms (since ne is approximately equal to 
the proton concentration). 
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The ratio of the number of metal atoms to the number of hydrogen atoms 
in the corona was determined by this method. It was found that this ratio is in
dependent of the height and approximately the same as in the reversing layer. / 2 2 2
This fact is of considerable interest since it attests to the intermixing of mater
ial in the corona. 

7.  Ultraviolet and x-radiations. The coronal lines observed in the visible 
portion of the spectrum are formed through transitions between sublevels of the 
ground states of the different ions. The next states of the coronal ions are, how
ever, very high. For  example, the resonance excitation potentials of the Fe X-
Fe XV ions are 30-40 V. Therefore the resonance lines of these ions lie in the 
far ultraviolet region of the spectrum. 

Excitation of ions in the corona can occur as the result of ionizations and 
subsequent recombinations. However, as calculations show, an electron col
lision is a more effective excitation mechanism. It should be borne in mind 
that for a tempezature of the order of a million degrees, the average energy of 
a free electron is about 100 eV. Therefore each free electron, in practice, can 
excite, through a collision, ions such as the iron ions mentioned above. 

Specifying a certain coronal chemical composition, we can compute i t s  ul
traviolet spectrum. Calculations have shown that this spectrum should be very 
rich in emission lines. Moreover, the corona should also exhibit a continuous 
spectrum in the region being considered, arising from the recombinations of the 
most abundant atoms: hydrogen ( A  < 912 A), helium ( A  < 504 A )  and ionized he
lium ( A  < 227 w). A continuous spectrum at even shorter wavelengths (of the 
order of tens of angstroms) should appear due to the recombinations of highly 
ionized atoms of iron, nickel, etc. 

Observations, made with the aid of rockets, provided the possibility of de
termining the ultraviolet solar spectrum. This spectrum has already been de
scribed in the previous section. There, however, i t  was indicated that the ul
traviolet solar radiation arises primarily in the upper chromosphere and the 
transition region between the chromosphere and corona. However, a portion 
of this radiation, caused by multiply ionized atoms, comes from the corona. 

A s  is known, very short  wavelength radiation (from about 0 . 1  i%to several 
tens of angstroms) belongs to the x-ray region of the spectrum. It is easy to un
derstand that fairly intense x-radiation should appear in the corona with i ts  high 
temperature. A s  follows from what has been said above, i t  can be both contin
uous as well as line. 

Solar x-radiation has also been observed with the aid of rockets. The 2b
servations were made with filters predominantly in the 2-8, 8-18 and 44-60 A 
spectral regions, i. e., in  the soft x-ray region. Observations over a number 
of years have made i t  possible to determine the dependence of the x-radiation 
intensity on the solar activity phase. It was found that in years of maximum ac
tivity the x-radiation is several times more intense than in years  of minimum 
activity. This is explained both by an increase in the coronal density, as well 
as an increase in i ts  temperature during the transition from minimum to maxi
mum activity. 

/ 2 2 3  
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The results of solar x-radiation observations during the 1958 eclipse are 
of considerable interest. One of these is proof of the fact that the solar x-radi
ation is actually formed in the corona. The fact that the x-radiation intensity, 
during the total eclipse phase, amounts to a significant fraction (about 10%) of 
its uneclipsed intensity serves as the basis for this conclusion (at the same time 
the intensity of the L line emission, arising in the chromosphere, decreases by

(Y 

about a factor of a thousand). Another important result was obtained by investi
gating the dependence of the x-radiation intensity on the eclipse phase. It was 
observed that a particularly intense x-radiation comes from portions of the cor
ona lying above the active regions of the solar surface. This result is also con
firmed by x-ray photographs of the uneclipsed Sun. 

The results of an observation of the x-radiation during chromosphere flares 
a re  especially intezesting. In these cases streams of hard  x-rays-with wave
lengths of about 1A and less-are observed over fairly short time intervals (of 
the order of a few minutes). To explain such radiation one can made an assump
tion about the formation of very hot regions in the corona. Calculations, made 
by Elwert (see [14]),provided a representation of the coronal x-ray spectrum 

for different temperatures. For example, a temperature of about 107 degrees
is sufficient for the appearance of radiation with a wavelength of about 3 A. How
ever, to explain the observed shorter wavelength radiation requires assuming
the presence of a nonthermal emission mechanism in the corona. This mecha
nism, for example, can be the reverse Compton effect, i. e., the formation of 
hard photons through the scattering of radiation by relativistic electrons (which 
can occur in the vicinity of a flare). 

18. Solar Radio-Emission 

1. Results of o&servations. Solar radio emission was discovered during_ _  
the Second World War  and has been very intensively investigated since then. It 
was very quickly established that this emission comes to us from the corona 
and upper chromosphere layers. Thus, from the observed solar radio emission 
one can draw conclusions about the physical processes in its outermost portions. 
It is important to emphasize one significant advantage of radio observations of 
the corona and chromosphere over optical observations : whereas the high bright
ness of the photosphere interferes to a great extent with observations in the op
tical region, this is not the case for radio observations (since these very por
tions of the Sun a re  the "photosphere" for radio emission). 

Observations of the solar radio emission from the earth's surface can be 
made within a fairly broad wavelength interval-from several millimeters to 
several tens of meters. Shorter wavelength radiation is absorbed in the earth's 
atmosphere (by O2 and H20  molecules), and longer wavelength radiation is re
flected from the earth's ionosphere. 

The solar radio emission has been studied with the aid of radio telescopes, 
allowing one to measure the solar radiation of a specific wavelength. To meas
ure the intensities of the radio emission coming from different points of the so
lar disk, large-size radio telescopes o r  radio interferometers must be used. 
This is caused by the fact that the angular resolution, defined as the ratio of the 
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telescope aperture diameter to the radiation wavelength, is much less at  radio 
frequencies than at optical. 

Very valuable information on the brightness distribution over the disk at 
radio frequencies is also obtained during solar eclipses. Let us note that S. E. 
Khaykin and B. N. Chikhachev f i rs t  proved experimentally the coronal nature of 
the meter wavelength solar radio emission through observations of the 1947 so
lar eclipse (since the radio emission during total eclipse was found equal to 
about 40% of the uneclipsed emission). 

The measured radio emission intensity Iv is usually characterized by the 
brightness temperature Tv, i. e. , it is represented in the form I = Bv(Tv),

V 
where B (T) is the Planckian intensity at temperature T. Since hv/kT << 1for 

V 
radio frequencies, Planck's formula passes over to the Rayleigh- Jeans formula: 

Bv(T)=2v2 kT. (18.1) 

Therefore the brightness temperature is determined by the relation 

(18.2) 

The measured solar radio emission can be written in the form /225 

Hv = LQ, (18.3) 

where 
V 

is the average emission intensity and 52 is the solid angle at which the-
solar disk is viewed. Denoting the Planckian intensity by I V 9  corresponding to 

temperature T we can consider this temperature to be a measure of the emis-
V' 

sion. The quantity is called the effective temperature for frequency v. Us

ing Eq. (18. 2), we have 

29 
=-

P 
kTvQ. (18.4) 

Since D = n(R/r)', where R is the radius of the Sun and r is the distance 
from the Earth, then instead of (18.4) we obtain 

(18.5) 

However, the solar luminosity at frequency v is represented in the form 

2v2
Lv =h 2 R z-

c2 
kTq. (18.6) 
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A s  observations show, solar radio emission comprises two components: 
1) the radio emission of the quiet Sun (undisturbed component) and 2) the irreg
ular radio emission of the Sun (disturbed component). The first component is 
almost constant (more precisely, it varies slightly during the solar activity cy
cle). As  we shall see below, i t  is the thermal emission of the corona and chrom
osphere. The second component undergoes slow as well  as very rapid varia
tions with time. Its origin is associated with various active processes on the 
Sun: spots, chromosphere flares,  etc. 

A measurement of the solar radio emission leads to the result that the ef

fective temperature T 
V 

for  the undisturbed component is about 10
4 degrees in 

the centimeter band and about 106 degrees in the meter band. With respect to 
the disturbed component, effective temperatures of the order  of 108-10 9 degrees
and higher are sometimes obtained for  it in the meter band. In other words, the 
disturbed solar radio emission is sometimes 100-1000 and more times greater 
than the radio emission of the quiet Sun. 

Below we will discuss primarily the undisturbed component of the solar ra
dio emission, while the disturbed component will be considered very briefly. A 
detailed discussion of the problem of solar radio emission is contained in the al- /226-
ready cited monographs 111, [21, [17] and especially in the book of V. V. Zhelez
nikov ClS]. The general theory of radio emission propagation in a plasma is dis
cussed in V. L. Ginzburg's monograph [19]. 

2. Radio emission of quiet Kun. Proceeding toward an  interpretation of the 
observational data on solar-radioemission, let us  first give an answer to the 
question: in what layers of the Sun does it originate? To do this, we must de
termine the optical depths of the different layers in the radio frequency region. 
It is obvious that the emission can reach the observer only from those layers 
whose optical depth is no greater than about unity. 

The volume absorption coefficient aVmust be known in order to find the op
tical depth T ~ .  A s  explained in Section 5, the absorption of continuous spectrum 
radiation occurs through photoionizations and free-free transitions. Photoioni
zations, however, are produced only by those quanta wh.ose energy is greater 
than ionization energy (hv > x.), and therefore quanta in the radio frequency re

1 


gion, having a low energy, cannot be absorbed through photoionizations (they 
could be absorbed through photoionizations from the high discrete levels, but 
these levels do not occur in real life). At the same time quanta of any frequen
cies, including very low, can be absorbed through free-free transitions. The 
absorption of radio emission occurs through the free-free transitions. 

The volume absorption coefficient, caused by free-free electron transitions 
in  the field of a proton, is given by Eq. (5.10). 

Since hydrogen is the most abundant element in the solar atmosphere, then 
let us  assume that the total volume absorption coefficient is approximately deter

204 




mined by this formula, i. e.,  

(18.7) 

where n + and n are the concentrations of protons and free electrons, respece 
tively, T e is the electron gas temperature and g

U 
is the Gaunt factor (about 10 

in the radio frequency region). 

However, negative absorption, which plays a very big role for radio emis
sion is not taken into consideration in  Eq. (18.7). On the basis of what has been 
said in Section 8, the factor 1- e-h’’kTe must be introduced on the right side 
of Eq. (18.7) to take negative absorption into account. A factor of this form is /227
introduced for  free-free transitions for  the assumption of a Maxwellian velocity 
distribution for the free electrons. 

The quantity hu/kT is very small in the radio frequency region (for exe 6ample, hv/kTe fi: for  Te FY 10 degrees and h = 100 cm), so that this factor 
can be replaced by the quantity hv/kTe. Therefore the volume absorption coef

ficient in the radio frequency region, when negative absorption is taken into con
sideration, is written in the form 

(18.8) 

Since g
V 

is only very slightly dependent on u, then one can assume that a!
V 
- l / u  2 

Using the expression that has been derived for aV,we can determine the 

optical depth of any point in the solar atmosphere from the formula 

(18.9) 

where, for simplicity, it is assumed that Te = const. The dependence of ne on 
+ r must be known to calculate the integral entering into (18.9) (n = ne’ approx

imately). For  the corona this dependence is given by Eq. (17.13). The results 
of a calculation of the optical depths in  the corona for different wavelengths are 
given in Table 23, taken from I. S. Shklovskiy’s book [171. 

From the table it is seen that for meter waves the optical thickness of the 
corona exceeds unity, i. e., the solar radio emission in the meter  wave region 
comes to the observer primarily from the corona. The corona is transparent, 
to an appreciable degree, to shorter wavelength radiation, and therefore this /228 
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TABLE 23. OPTICAL DEPTHS IN THE CORONA FOR RADIO 
EMISSION 

I 

Wavelength h cm 
r-

R 3N ral 800 
-

1.06 0,183 0.73 1.65 2 3 3  6.6 11.7 47 107 
1.1 0,061 0.26 0,59 0.93 2.4 4,2  17 38 
1.2 0,017 0,068 0,154 0 , z  0 ;62 1.l-Q 104.4 
1.4 0,004 0,015 0.0s 0,053 @,l$ 0.25 1.0 2,3 
1.6 . O,OOO6 0,002 o,w5 0.00s 0.02 O.W 0,l-i 0.82 

4 ~- ~- ~~~ 

Commas represent decimal points. 

radiation comes to the observer not only from the corona but also from the 
chromosphere. 

The radio emission absorption process that has been discussed occurs 
through the transitions of free electrons from one hyperbolic orbit to another in 
the field of an ion. The emission of quanta in the radio frequency regions occurs 
through reverse transitions. Such transitions are the source of the quiet Sun ra
dio emission. Thus, this emission is the usual thermal emission of the electron 
gas. In terms of its origin, the undisturbed solar emission is no different from 
solar radiation in the optical region of the spectrum. Solar radio emission, how
ever, comes to the observer from the corona and chromosphere, and the emis
sion in the optical portion of the spectrum-from deeper photosphere layers. This 
difference is explained by the drastic increase in the absorption coefficient with 
a decrease in radiation frequency. 

If we know the volume absorption coefficient 01 then we can also easily de-
V’ 

termine the volume emission coefficient E For this, let us make use of the 
known relation V *  

which is valid for free-free transitions for a Maxwellian velocity distribution of 
the free electrons. Substituting Eqs. (18.1) and (18.8) into Eq. (18.l o ) ,  we ob
tain 

Knowing the absorption and emission coefficients allows one to calculate the 
intensity of the radiation coming to the observer at any distance from the center 
of the solar disk. We will perform this calculation below, but for now let us de
rive an approximate formula for the solar luminosity a t  radio frequencies, Let 
us denote by R the radius of the solar disk for the radio emission frequency v 

V 
(it is defined from the condition that the optical path of the ray, coming a t  a 
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distance R from the center of the disk, is equal to unity). Then, assumingthat 
T~ = constf)for the solar luminosity at  frequency u we have 

L,=4zRv25tB,(Te) .  (18.12) 

Substituting Eq. (18.1) here, we find 

2 9
Ly =4n2Rv2-

c2 
k T i  (18.13) 

We will apply Eq. (18.13) to the solar radio emission at meter wavelengths, /229
which, as was explained above, comes to us from the corona, As seen from this 
formula, the solar luminosity is proportional to the frequency squared, which is 
confirmed by observations. From the value of the luminosity, found from obser
vations, one can determine the electron temperature Te of the corona with the 
aid of Eq. (18.13). 

As already stated, the effective temperature of the Sun T in the meter re-
U 

gion is about 106 degrees. Comparing Eqs. (18.6) and (18.3), we see that TV fi 
* Te (since R differs little from R). Therefore the electron temperature of the 

V 
corona must also be about 1 06 degrees. The measurement of the solar luminos
ity at radio frequencies was one of the first proofs in favor of a high corona tem
perature. If the corona temperature were equal to the photosphere temperature, 
then the solar luminosity in the meter band would be hundreds of times lower than 
what is observed (since Lu -Te). 

The centimeter wave solar radio emission comes primarily from the upper 
chromosphere layers. The measured effective temperature of this emission (about 
10,000') is approximately equal to the electron temperature of these layers. 

It should be emphasized that Eq. (18. 13) is valid only when Te = const. 

Therefore it cannot be applied to the centimeter wave solar radio emission, 
which comes to use partly from the corona and partly from the chromosphere. 
The formula for the solar luminosity in this case will be derived below. 

3. Distribution of radio emission over the disk. Knowing the mechanism 
of quiet Sun radio emission permits one to find the intensity distribution of this 
emission over the disk. Generally speaking, the radio emission of a given fre
quency comes to the observer both from the corona and from the chromosphere. 

Let us denote the corona temperature by T1 and the chromosphere temper
ature by TZ, and we will assume they are  constant. Let us also assume that the 

corona and chromosphere have spherical symmetry, with the boundary between 
them being a sphere of radius R. 
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The intensity of emission of frequency v, coming to an  observer a t  a dis
tance r from the center of the disk, is given by the formula 

(18.14) 

where t 
V 

is the optical distance of a given point in the solar atmosphere to the 

observer [compare with Eq. (16.9)l. If r > R, then the radiation comes onlyfrom
the corona, and Eq. (18.14) assumes the form 

/230-

Iv ( r )=Bv(Ti)[1- e-*vyr)], (18.15) 

where 

(18.16) 

If r < R, then chromosphere radiation (weakened by absorption in the cor
ona), as well as corona radiation, reaches the observer. In this case, instead 
of (18.14) we have 

Zv( r )=B, (Ti)[1 - +B, (Tz)e-fvqr), (18.17) 

where 

and it is assumed that the optical thickness of the 
great. 

(18. 18) 

chromosphere is infinitely 

Equation (18.8) for the absorption coefficient a must be substituted into 
V 

Eqs. (18.16) and (18. 18). Then a law must be specified for the variation of the 

V 
0 
(1). Substitutionelectron density in the corona for  calculating the quantity t 


of the calculated values of tv0(r)into Eqs. (18.15) and (18.17) gives the theoret


ical distribution of the thermal radio emission over the solar disk. 

The results of these calculations are inherently dependent on the emission 
wavelength, For radiation with a wavelength of about 1cm and less, the optical 
thickness of the corona is very small and, therefore, as is seen from Eq. (18.17), 

I v  ( r )  E Bv (Tz), 

i. e. , the radio emission intensity is the same over the entire disk and corresponds 
to the chromosphere temperature. With an increase in wavelength, the optical 
thickness of the corona increases and, in addition, the role of coronal radio 
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emission increases. As one goes out from the center of the disk, the intensity 
of this radiation increases at first, and decreases, reaching a maximum for r = 
= R (since the optical path length in the corona is a maximum for r = R). For 
meter waves, the optical thickness of the corona exceeds unity. In this case, as 
seen from Eqs. (18.17) and (18.15), the emission intensity is constant and cor
responds to the corona temperature for r < R, and then decreases slowly with an 
increase in  r. 

The described results of calculations of the radio emission distribution ov- /231 
e r  the solar disk agree, in  general features, with observational data. The ob

served intensity distribution of 7.5-cm radiation 
is shown in Fig. 22 as an example. From the fig-

t*Tz:2-
I ure i t  is seen that the observations, just like the 

calculations, give a maximum brightness for r x 
x R. Some discrepancies between the proposed
simple theory and the observations are explained 
by the fact that in reality the corona and chrom-
osphere temperatures are not constant and the 
corona is not spherically symmetrical. 

0 ? By using the formulas that have been de-
rived �or the solar radio emission intensity, onef can determine the solar luminosity a t  radio fre-

Figure 22. quencies. Obviously, the solar luminosity a t  
frequency v is equal to 

(P 

L,=4 n - 2 ~ 1Iv(r )rdr .  (18.19) 
0 

Substituting, here, Eqs. (18.15) and (18.17), we find 

o r  

JL= ~ J C * R ~ [ Q V B V(T1)+ bvBv (Tz)J, (18.21) 

where 

(18.22) 

(18.23) 
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Expressing the solar luminosity L
V 

in terms of the effective temperature 

Tvwith the aid of Eq. (18.6), and also using Eq. (18.1) for the quantity Bv(T), 
instead of (18.21) we  obtain 

Tv =.&Ti + bvT2. (18.24) 

Equation (18.24) expresses the effective temperature T of solar radio emission 
of frequency v in terms of the corona temperature T1and the chromosphere 
temperature T2' 

The quantities a
V 

and b 
V 

are easily determined numerically. In particular 	 /232-
according to the calculations of I. S. Shklovskiy and S. B. Pikel'ner (see [17]), 

a,. = i. by = 0,0019 for X = 3 uc, 
a,. = 0.99, b,. = 0.021 for  X = 10 cm, 
a,. = 0.96, b, = 0.088 for X = 21 cm, 
a,. = 0,82, bv = 0.37 for  X = S O  CX, 

By specifying the corona and chromosphere temperatures (T1 106 degrees
4and Tz 10 degrees), we can find the theoretical dependence of the effective 

temperature T on frequency. The values of T obtained from observations,
V V' 

approximately satisfy this relationship. 

4. Radio wave propagatio_nAn-the corona. In determining the radio emis
sion b r i g h m i s t r i b u t i o n  over the solar disk, we assumed that the radiation 
is propagated rectilinearly. In reality, however, the radio emission can under
go refraction in the surface layers of the Sun. An expression for  the refractive 
index of radio waves in a plasma must be known in order to explain the role of re
fraction. 

Considering the motion of a free electron in  the field of a radio wave, one 
can derive (see [19]) an expression for the absorption coefficient o!

V 
as well as 

an expression for the refractive index n. The expression for  the absorption co
efficient has already been given above by Eq. (18.8). Insofar as the refractive 
index is concerned, i t  turns out to be equal to 

(18.25) 

where the quantity vn, representing the normal oscillation mode of the plasma, 

is defined by the formula 

(18.26) 
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We see that n < 1,  i. e., the plasma has a lower refractive index for radio 
waves than a vacuum. With an increase in  ne the refractive index decreases, and 

for each frequency v there is a critical value ne ' of the electron density for which 

n = 0. The radiation does not pass through the level where n = 0, but undergoes 
total reflection. Consequently, the radio emission comes only from solar at
mosphere layers above this level. 

On the other hand, as we know, radiation comes to the observer primarily 
from those layers whose optical depth is less than unity. Let us denote by nerr 
the value of the electron density for T~ = 1. Then one can say that if nef >> ne 
(i.e. , the level with n = 0 lies below the level with T 

V 
= l ) ,  refraction has little 

effect on the radiation coming to the observer. Calculations show that this is 
the case for centimeter and decimeter waves. For example, for  h = 10 cm, as 

and nseen from Eq. (18 .26) ,  ner = 10 l1  ~ m - ~ ,  eITM 109 cm -3 . In this case n M 1 

throughout the entire region where T
V 

< 1. For meter waves, however, n e << 

<< n and refraction plays a very large role. e 

To determine the ray trajectory when refractiod is considered, one must 
use the known relation 

a(r')r'sin 6 = r, (18 .27 )  

where n(rl)  is the refractive index at a distance rrfrom the center of the Sun, 8 
is the angle between the radiation direction and the radius vector, r is the dis
tance from the center of the Sun to the tangent to the direction of the radiation 
coming from the corona. Substitution of Eq. (18 .25)  into Eq. (18 .27)  gives a 
ray trajectory that is convex toward the center of the Sunpig.  23).  

The optical path in the corona is obviously determined by the formula 

r 	 -. 
Q, a v ( r ' ) d f  

/233 
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found as a result  of such calculations, differs significantly from the distribution 
obtained when refraction is ignored. 

Let us  note that for  a medium with a varying refractive index the radiation 
transfer equation has the form 

(18.30) 

Since, in  the presence of thermodynamic equilibrium, the radiation intensity is 
equal to n 2 BV(T),where B (T) is the Planckian intensity, the relationship be-

V 
tween the emission coefficient E 

V 
and the absorption coefficient av is given by 

the formula 

&v = n2&Bv (T). (18.31) 

Substituting (18.31) into Eq. (18.30) and integrating it for T = const, we again 
arr ive a t  Eq. (18.15) for  the intensity of the radiation, coming from the corona, 

in which the quantity t 0
(r)is given by Eq. (18.29). 

v * 

5. Sporadic radio emission. The Sun is rarely quiet at radio frequencies. 
The disturbed emission, which can be divided into two components, is usually 
superimposed on the radio emission of the quiet Sun, The f i r s t  of these varies 
relatively slowly (over a period of hours, days and months), the second-very 
rapidly (over a period of seconds and minutes). 

The slowly varying component of the disturbed solar radio emission is ob
served primarily in centimeter and decimeter waves. Its intensity is comparable 
to the intensity of the radiation of the quiet Sun, From observations i t  follows 
that the origin of this component is associated with the formation of sunspots 
(since the greater the spot area, the more intense the radio emission). More 
precisely, the sources of the slowly varying solar radio emission a r e  regions lo
cated over spots and faculae. A direct comparison of solar images, made a t  ra
dio frequencies and in the optical portion of the spectrum, confirms this. The 
local radio emission sources rotate together with the Sun, and since they are lo
cated above spots, they r i se  ear l ier  and set later than the spots. On this basis 
the heights of the sources above the photosphere, which are of the order of 0.05 
Ro, can be determined. 

Observations (performed especially during eclipses) provide the possibility 
of determining the location, size and effective temperature of the local sources. 
An examination of these data lead to the conclusion that the slowly varying dis
turbed solar radio emission is the thermal emission of coronal condensations, 
i. e. ,  it originates through free-free electron transitions in the field of ions (or,  
in other words, it represents the bremsstrahlung during the collisions of charged 
particles). Since the density in coronal condensations appreciably exceeds the 
density in the corona and the absorption coefficient for free-free transitions, ac
cording to Eq. (18. ll), is proportional to the density squared, then fairly intense 
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radiation comes from the condensations, although they occupy a relatively small  
portion of the corona volume. 

Observations show that the radio emission of local sources is partially 
polarized. This is explained by the effect of the magnetic fields of the spots 
above which the sources are located. A plasma in a magnetic field possesses 
the property of birefringence, with the refractive indices and the absorption co
efficients of the two rays  (ordinary and extraordinary) being different. Because 
of this the radiation is elliptically polarized. It is possible that in  some cases 
the radio emission of local sources arises through the deceleration of electrons 
in  a magnetic field, i. e., there is magnetoretardation. 

The rapidly varying component of the solar radio emission is observed 
throughout the entire radio range (from millimeter to meter waves). It appears 
in the form of bursts of radio emission of different duration and intensity. Some 
bursts occur within a time of the order of 1sec with an effective temperature 
that is several times greater than the effective temperature of the quiet Sun. 
However, much more intense bursts are also observed-with a duration of sev

era1 minutes with an effective temperature of lo8-10 9 and sometimes even 1012 

degrees. 

Radio emission bursts obviously cannot have a thermal origin. Therefore 
nonthermal emission mechanisms are included to explain the bursts. One of these 
indicated by I. S. Shklovskiy) consists of the excitation of plasma oscillations by 

a beam of fast  particles. In this situation longitudinal plasma waves are formed 
which are then converted into transverse electromagnetic waves. The frequen
cies of the normal plasma oscillations are determined by Eq. (18.26). From 
the latter it is seen that for the electron densities, characteristic of the corona, 
meter waves appear a t  which intense radio emission bursts are observed. It is 
possible that fast  particles, forming during chromosphere flares,  are the cause 
of plasma oscillations. The fact that intense radio emission bursts are observed 
for several minutes after chromosphere flares favors this hypothesis. Bursts 
are observed initially a t  the shorter wavelengths, and then a t  longer and longer 1236  
wavelengths. This can be explained by the movement of fast particles, causing 
plasma oscillations, from the more dense to the less dense regions of the cor
ona. The bremsstrahlung of relativistic electrons in a magnetic field, i. e . ,  
the so-called synchrotron radiation (see Section 31 about this), has been cited 
as another possible mechanism of radio emission bursts. Since bursts are very 
diverse, one can conclude that they arise due to the effect of different mecha
nisms. The fundamental problems associated with solar radio emission bursts 
are discussed in S. A. Kaplan's book I201. 

6. Supercorona of the Sun. The solar corona can be investigated not only 
from i ts  radio emission but also from the attenuation of the coronal radiation 
coming from sources located beyond it. By fortuitous chance one of the most 
powerful galactic sources of radio emission, the Crab nebula, lies very close 
to the ecliptic (at a distance of about 4.5 angular solar radii). Therefore every 
year the Crab nebula is eclipsed by the outer portions of the corona. Observations 
of this phenomenon, first made by V. V. Vitkevich, led to the discovery of portions 
of the corona a t  distances of several tens of solar radii from the center of the Sun. 

2 13 




The outer portion of the corona (usually called the supercorona) attenuates 
the radiation of the Crab nebula because of the scattering of radio waves by elec
tron irregularities. When a ray passes through an inhomogeneity, the ray is 
deflected because of a difference in the refractive indices of the inhomogeneity 
and the surrounding medium. Simple calculations allow one to determine the 
decrease in the intensity of the radiation, passing through the corona at differ
ent distances from the center of the solar disk, as a function of the number of 
inhomogeneities, their size and the electron density in them. From a compari
son of theory with observations i t  is found, for example, that in the corona at 
a distance of 20 solar radii the linear dimensions of the inhomogeneities amount 

10 3 3 
to about 10 em, and the electron densities in them-to about 10 cm- . 

It should be noted that the supercorona can also be observed in the optical 
portion of the spectrum. Michard, in 1952, and Blackwell, in 1954, made such 
observations during solar eclipses (to reduce the effect of light, scattered by 
the earth's atmosphere, the latter observations were made from an airplane). 
These observations also led to a determination of the density of free electrons 
a t  different distances from the center of the Sun. A comparison of observational 
data, obtained in the visible portion of the spectrum and at radio frequencies,
permitted V. V. Vitkevich to conclude that the solar supercorona has a two-
component structure. He assumes that the supercorona consists of a diffuse 
component with a density that decreases rapidly as  r increases and a radial 
component, penetrating into it, whose density decreases more slowly. The 
radial component represents plasma flows, moving in radial directions from the 
Sun. The radio emission is scattered by the inhomogeneities of the radial cor
ona component. 

On the basis of the observed slow density decrease in the corona with in
creasing distance from the Sun, the notion arose that interplanetary space is 
nothing more than an extension of the corona. At  first the properties of inter
planetary space at different distances from the Sun were determined by consid
ering a model of a static corona. Then Parker [21] made a detailed hydrodynam
ic  examination of an "expanding corona", i. e. , a corona consisting of particles 
moving from the Sun. This movement occurs with enormous velocities (at large 
distances from the Sun-of the order of hundreds of kilometers per second) and 
gives rise to the existence of a "solar wind" in interplanetary space. The solar 
wind evidently exerts a considerable effect on the outer portions of planetary 
atmospheres, on comet tails and on certain other objects in the solar system. 
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CHAPTER IV 

PLANETARY ATMOSPHERES 

As is known, the planets are luminous because of the reflection of sunlight 
by them. A complex process of multiple light scattering occurs in planetary at
mospheres, as a result of which the radiant energy partially undergoes true ab
sorption (i.e. , changes into another form of energy), and partially escapes out
ward from the atmosphere. From the radiation, diffusely reflected by a plane
tary atmosphere, we can learn about the optical properties of the atmosphere and 
about the physical nature of the particles composing it. 

The atmospheres of some planets (for example, Venus and Jupiter) have a 
very large optical thickness and the surface of the planet is not visible through 
the atmosphere. Other planets (for example, M a r s )  are surrounded by atmos
pheres of small optical thickness. In this case information can be gathered not 
only about the atmosphere but also about the planet's surface by studying the ra
diation from the planet, 

This chapter is devoted primarily to the theory of multiple light scattering 
in planetary atmospheres along with i ts  application to individual planets. The re
sults of photometric and spectroscopic observations of planets are used in this. 
This theory is discussed in more detail in specific papers [l-31. 

Recently, very valuable information about planets has been obtained with 
the aid of rockets. The results of radio emission studies of planets are also of 
considerable interest. These results will be indicated briefly a t  the end of the 
chapter . 

19. Light Scattering in Planetary A.tmospheres 

1. Basic equations.-~Because of the thinness of the atmosphere in compar
ison with the radius of a planet, one can make the approximation that the atmos
phere consists of plane-parallel layers. In addition, one can assume that the at
mosphere is illuminated by parallel sunbeams. We will denote the angle of inci
dence of the sunbeams on the atmosphere a t  a given point by 90, and the illumin

-/239 
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ance perpendicular to its surface-by nF. Our problem will be one of determin- /240
ing the intensity of the radiation coming from the atmosphere in different direc
tions after the process of multiple scattering in it. 

To solve the problem that has been se t  forth, we must make use of the ra
diative transfer equation. As shown in Section 1, in the case of plane-parallel 
layers this equation has the form 

dJ
c o s 6 - = - a r + q  (19.1)

dz 

where I is the radiation intensity, a! is the absorption coefficient, E is the emis
sion coefficient, z is the height above the planet's surface, 9 is the angle be

tween the radiation direction and the normal 

?.!l\W<
to the atmosphere layers (Fig. 24). Thequan-

I (q asp) 	 tities I, o! and E depend on the radiation fre
quency, but to simplify the notation we will  
omit the index I/. 

nE 
The quantity E ,  entering into Eq. (19.1), 

is caused by light scattering occurring in a 
volume element, We will assume that a frac-

*/////777m7 
A 7-5 

tion h of the total amount of radiant energy 
absorbed in this volume is scattered by it. 
In this case the quantity h will be represent 

Figure 24. the scattering coefficient, and the quantity 
(1- h)o!-the true absorption coefficient. 
Generally speaking, the probability of radi-

tion scattering is not the same in different directions. Let us denote by x(y)dw/ 
/ 4 n  the probability of radiation scattering in a direction, forming an angle y with 
the direction of the radiation incident on the volume, within a solid angle dw. The 
quantity x(y )  is called the scattering indicatrix. If radiation scattering occurs 
with equal probability in all directions, then x(y)  = 1. In this case the scattering 
indicatrix is said to be spherical. 

To obtain an expression for  the quantity E ,  let us consider a volume ele
ment with unit area base and a thickness dz located a t  a height z. This volume 
is illuminated both by radiation coming directly from the Sun and by radiation 
scattered by the atmosphere. Let us denote the optical depth of this volume el
ement by T ,  i. e. ,  let us say 

(19.2) 

Then the amount of energy incident on the volume directly from the Sunwill be /241 
to nFe-TSedO c o d o .  A fraction d z  seed0 of this amount of energy is absorbed 

by the volume, and a fraction hx(y)dw/4n is scattered by it a t  an angle y to the 
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direction of the sunlight in the solid angle dw. Therefore for the emission coef
ficient, caused by first order scattering, we obtain 

(19.3)  

An additional term, resulting from higher order scattering, must be added 
to Eq. (19.3) .  As a result, for the total emission coefficient we obtain 

(19 .4)  

where the integration is done over all directions of radiation incidence on the vol
ume and y '  is the angle between any of these directions and the direction of the 
radiation scattered by the volume. 

Instead of the emission coefficient E in Eqs. (19 .1)  and (19.4) ,  let us intro
duce the quantity S by means of the relation 

e =as. (19 .5)  

For an arbitrary scattering indicatrix the quantities S and I depend on the optical 
depth 7, the zenith distance 8 and the azimuth cp. Therefore instead of Eqs. (19.1) 
and (19 .4)  we can write 

(19.6)  

where 

cosy' =cos *cos 6' +sin ffsin 6"s (cp -(93, 

~sy=-cos6cos6o+s in6s in6o  mosw, 1 (19 .8 )  

and the azimuth of the sunlight direction is taken equal to zero. 

Thus, the problem of light scattering in a planetary atmosphere reduces to 
a solution of Eqs. (19 .6)  and (19.7). Boundary conditions must still be added 
to these equations. The condition at the upper boundary of the atmosphere (i.e., 
for  7 = 0) must express the fact that there is no diffuse radiation incident on the 
atmosphere from outside. The condition a t  the lower boundary (i.e. ,  for 7 = 70) 
must take account of radiation reflection by the planet's surface. 

Solving the equations that have been presented, one can find the intensities 
or the radiation coming from the atmosphere. A comparison of the theoretical 
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and observed values of these intensities allows one to draw conclusions about the 
optical properties of the atmosphere, i. e. , about the quantities T ~ ,h and x(y). 

From the optical properties of the atmosphere, in turn, one can learn about 
the nature of the particles which comprise it. To do this the theory of light scat
tering by individual particles is used (see, for example, [4]). This theory, de
veloped in particular detail for spherical particles, defines the absorption coef
ficient a, the particle albedo h and the scattering indicatrix x(y)  as a function of 
the ratio of the particle radius to the radiation wavelength and of the refractive 
index of the particle material. 

Let us  note that in the case of light scattering by molecules the scattering 
indicatrix is determined by the Rayleigh formula 

(19 .9)  

If, however, the light scattering is done by particles whose radii a r e  com
parable to the radiation wavelength, then the scattering indicatrix usually is 
greatly elongated forward. 

2. ~~Semi-infinite atmosphere. A s  already indicated, the atmospheres of 
some planets have an optical thickness in excess of unity. In this case, to deter
mine the intensity of the radiation, diffusely reflected by the atmosphere, one can 
assume the approximation T0 = CO. 

Let us first assume that isotropic light scattering occurs in the atmosphere, 
i. e. ,  x(y)  = 1. Then the quantity S will be a function of I-only, and the radiation 
intensity I-a function of T and 4 only. Therefore Eqs. (19 .6 )  and (19 .7)  can be 
rewritten in the form 

(19 .10)  

(19 .11)  

where cos4 = p, c 0 s 8 ~= p 0 and the dependence of the quantities I and S on the pa

rameter p0 is emphasized. 

From Eqs. (19.10)  and (19.11)  one integral equation can be derived for de- /243
termining the function S(T,po). Proceeding in the same manner as in the deri

vation of Eq. (2 .47) ,  we obtain 

(19.12)  
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If the function S(T, po) is known, then the intensity of the radiation coming 

from the atmosphere, i. e. , the quantity I(0, p, p0), can easily be determined. 
Assuming 

we have 

(19.14) 

The quantity p(p ,  p0) is called the atmosphere brightness coefficient. 

The integral equation (19.12) reduces to an equation like (3. l),considered 
in detail in Section 3. In the given case the kernel of Eq. (3.1) is given by
Eq. (3.17) in  which A(x) = h/2x, a = 1, b = 00 , and the free term has the 

form g(T) = ( h / 4 ) F e  Using Eqs. (3.19) and (3.20), we obtain for the bright
ness coefficient the expression 

(19.15) 

in which the function q(p) is defined by the equation 

(19.16) 

As we recall, the function q(p)  has already been encountered in the theory of 
stellar photospheres (in Section 3)  and in the theory of stellar spectra formation 
(in Section 10). Now we see that the brightness coefficient of a planet's atmos
phere is expressed in terms of the same function. Values of the function q(p)  for 
different values of the parameter h are presented in Table 11 (p. 129). 

We derived Eqs. (19.15) and (19.16) with the aid of Eq. (19.12); however, 
V. A. Ambartsumyan has shown that they can also be derived without using this 
equation, namely-by means of the so-called "invariance principle". According 
to this principle the reflectivity of a semi-infinite medium is not altered if some /244-
layer with the same optical properties is added to it. By adding to a semi-infin
ite medium a layer of infinitely small optical thickness, determining all the changes 
in the intensity of the radiation introduced by this layer, and equating them to zero, 
we also arr ive a t  the stated relations (see [l]). 

The brightness coefficient for an arbitrary scattering indicatrix was also 
found by means of the invariance principle. By way of an example, let us pre
sent the result obtained for a very simple nonspherical scattering indicatrix 

z(v) = 1+zimsy, (19.17)
where x1 is some parameter. 
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In the case given the brightness coefficient is defined by the formula 

Pb,Ma 9) = Po(& w) + PI(& MI coscp, (19.18) 

and the quantities p 0(p,  p0) and p,(p, p
0

) have the following structure: 

(19.19) 

(19.20) 

In turn, the auxiliary functions qoo(p) and qlo(p) are determined from the 
system of equations 

(19.21) 

(19.22) 

and the auxiliary function qll(p)-from the equation 

(19.23) 

The functions cp,O(p), cplo(p) and qll(p) have been tabulated so that the com

putation of the brightness coefficient from Eqs. (19.18)-(19.20) represents no 
problem. 

3. Atmosphere of finite optical thickness. Let us  now consider light scat
tering in an atmosphere of arbitrary optical thickness T0' Assuming for sim

plicity that the scattering indicatrix is spherical, we obtain the following equation /245
for determining the function S(T,po): 

(19.24) 

Here, for the present, we have neglected light reflection by the planet surface. 

Our problem consists of determining the intensities of the radiation diffuse
ly reflected and diffusely transmitted by the atmosphere. Instead of these we will 
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look for the corresponding brightness coefficients p(p,  po) and o(p,  p0), expres

sed in terms of the function S(T, p,) by means of the formulas 

(19.25) 

(19.26) 

To find the quantities p(p ,  po) and ~ ( p ,0), however, there is no necessityp 

to determine the function S(T, p0) beforehand. Just as in the case of T0 = co, one 

can obtain equations directly defining the brightness coefficients. To do this, we 
proceed in the following manner. 

Let us rewrite Eq. (19.24) in the form 

L S
S(T,w)=2$Ei(z-t )S(t ,  p@t+ 

D 
1’xu x+2 $ Ei(t-r)S(t,po)& +--Fe 14. (19.27)a 

% 

After setting T - t =x in the f i rs t  integral and t - 7 =x in the second, we obtain 

(19.28) 

Differentiating this equation with respect to T ,  we obtain /246 

2. x
-l- S(0,[io) EiT --

2 
S(TO,po)Ei(TO-T). (19.29) 

Comparing Eqs. (19.24) and (19.29), we see that they have the same ker
nels and differ only in their f ree  terms. But since the function Ei T is de
fined by the formula 

(19.30) 
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then the free term of Eq. (19.29)  represents a superposition of the free terms of 
Eq. (19.24). Therefore, because of the linearity of the equations being consider
ed, we have 

(19.31)  

The relation (19.31)  also provides u s  the possibility of obtaining equations 
determining the quantities p(p ,  p,) and o(p,  p,). Multiplying this relation by-
e "'dT/p, integrating with respect to T over the limits from zero to T

0 
and tak

(19.32)  

where 

(19.33)  

* ¶ 

$(PI =e - r - t z p j  P')W. (19 .34)  
0 

After the multiplication of Eq. (19.31)  by e-(',- ')/h., - /p  an( integration, /247 
we obtain similarly 

(19.35)  

On the other hand, from Eq. (19.24)  it follows 

(19.36)  
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F r o m  the same equation we find analogously 

(19.37) 

Making use of the symmetry of the quantities p(p ,  po) and a(p, po) with re
spect to p and po (which will be demonstrated below) and the definitions of (19.33) 

and (19.34), we obtain 

(19.38) 

Substitution of Eqs. (19.38) into Eqs. (19.32) and (19.35) yields 

(19.39) 

(19.40) 

Substituting, however, Eqs. (19.39) and (19.40) into Eqs. (19.33) and (19.34), 
we find 

(19.41) 

(19.42) 

Equations (19.39)-(19.42) are what we have sought. Equations (19.39) and 
(19.40) define the s t ructure  of the brightness coefficients, and Eqs. (19.41) and 
(19.42) se rve  to define the auxiliary functions q(p) and $(p) .  

F o r  a scattering indicatrix of a rb i t ra ry  form the brightness coefficients 
are also expressed in  terms of the auxiliary functions, depending only on one 
argument, and these functions are determined by systems of equations similar 
to Eqs. (19.41) and (19.42) (see,  f o r  example, [ZI ) .  

The symmetry of the brightness coef�icients with respect  to the angles of 
incidence and reflection ( o r  transmission) still remains to be proved. To do 

/248-
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this let us consider the integral equation 

(19.43) 

with an arbitrary kernel, depending on the modulus of the difference of two argu
ments, and with an arbitrary free term, depending on the parameter po. Equa
tion (19.24) is a special case of Eq. (19.43). 

Assuming that g(7, p )  represents the free term of Eq. (19.43), in  which p0is replaced by p, we obtain 

(19.44) 

From this, turning again to Eq. (19.43), we obtain 

(19.45) 
0 0 

Analogously, one can obtain: 

Assuming g(T, p0) = e and taking Eqs. (19.25) and (19.26) into account, 

from (19.45) and (19.46) we have 

P(P, Po) = P(P0Y P), O(PY Po) = a(Po9 PI. (19.47) 

These relations, which we have already used before, are what we were to prove. 

Equations (19.47) play an extremely important role in the theory of light 
scattering. From a physical point of view they express the "reciprocity princi
ple" for optical phenomena. Minnaert [5] f i r s t  applied this principle to planet at
mospheres. 

4. Light reflection by the planet's surface. We have assumed above that 
the coefficient of light reflection by the planet's surface is equal to zero. Now 
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we will take the reflection effect into account, with our assuming, for simplicity, 
that the intensity of the reflected light is independent of direction (i.e. , the re
flection is isotropic). Letus designate the albedo of the planet surface by A. The 
scattering indicatrix of light in the planet atmosphere, just as before, wil l  be as
sumed to be spherical. 

In the case given the atmosphere is illuminated not only by direct sunlight
from above, but also by diffuse radiation coming from the planet surface below. 
We will nowiesignate the ratio of the emission coefficient to the absorption co
effecient by s ( ~ ,  and instead of Eq. (19.24) we obtainp,) 

whereT(p0) is the intensity of the radiation reflected from the surface. /250 

We must find the brightness coefficients p(p,  po)  and z ( p ,  po) ,  defined by
the formulas 

(19.50) 

The last term of Eq. (19.49) takes account of radiation reflected by the surface 
and passing through the atmosphere. 

The quantity T(po), entering into the equation, is also not known a priori. 
It obviously depends on the unknown radiation intensity, incident on the surface, 
or on the corresponding brightness coefficient a ( p ,  po). To find the stated rela
tionship, one must first of all write the expression for the surface illumination. 

It is easy to see that the illuminationby direct sunlight is equal to 7rFe-T0’pop0, ,a.d 
the illumination by the diffuse radiation of the atmosphere is equal to 27rFp so

00 
( p ,  po)pdp. Multiplying the total illumination by the surface albedo A, we obtain 
.the amount of energy reflected by the surface. On the other hand, this amount 
of energy is equal to 7r?(p 0). Therefore we have 

(19.51) 

226 



To determine the quantities i ( p ,  p0) and a ( p ,  p0), we equate Eqs. (19.24)  

and (19.48). From this equation it is seen that 

Multiplying (19.52) by e-"'dT/p, integrating over the limits from zero /251
to T0 and using Eqs. (19.25), (19.26) and (19.49) ,  we obtain 

Analogously, we obtain 

To determine the quantity ?(p 0), 

grate over the limits from zero to 1. 

where 

Also introducing the definitions 

we multiply (19.54)  by 2pdp and we inte-
With the aid of (19.51)  this yields 

(19.55)  

(19.56)  

(19.57)  

(19.58)  

and substituting (19.55)  into (19.53) and (19.54), we obtain 

(19.59)  
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(19.60) 

Thus, we have arrived at formulas by means of which the brightness coef- /252-
ficients F(p ,  p,) and a ( p ,  p o )  for A # 0 are expressed in terms of the brightness 

coefficients p(p,  p0) and u(p,po) for A = 0. 

The quantities M(p) and N(p) entering into Eqs. (19.59) and (19.60) can be 
expressed in  terms of the same auxiliary functions q(p) and $(/A), in terms of 
which the quantities p(p, po) and u(p,  po) were previously expressed. By means 

of Eqs. (19.39) and (19.40), as well as Eqs. (19.41) and (19.42), we obtain 

(19.61) 

where the definitions 

I (19.63)  

are used, i. e. , o!0 
and p

0 
are the zero moments of the functions q(p)  and $(p) .  

It  is easy to see that the quantities M(po) and N(pO) have a simple physical 

meaning. The first of them represents the ratio of the planet surface illumina
tion to the illumination of the upper boundary of the atmosphere, and the second-
the ratio of the illumination of the upper boundary from below to the illumination 
of the upper boundary from above (for A = 0). 

5. Planet albedo. The formulas derived above for the intensity of the ra
diation, diffusely reflected by the planet atmosphere, make it easy to determine 
the planet albedo. First ,  let us find the so-called planar albedo, i. e. , the planet 
albedo a t  a given point for a certain incidence angle of the sunlight on a planar 
layer, which is the form in which the atmosphere is represented. It is obvious 

1
that the radiation flux, coming from the atmosphere, is equal to ZrFp0 0Jp(p, p0) 

pdp, and the solar radiation flux, incident on the atmosphere, is equal to nFpO. 
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Therefore the planar albedo, being the ratio of the fluxes mentioned, is equal to 	 /253 

(19.64) 

To calculate the quantity A1(po), we substitute Eq. (19.59) into Eq. (19.64). 

Taking Eqs. (19.58) and (19.61) into account, we obtain 

where, just as before, A is the planet surface albedo, and al and p1 are the first 
moments of the functions cp(p) and $(p).  As seen from Eqs. (19.56), (19.58) and 
(19.62), the quantity C is equal to 

c = 1- (2 -Xao)al- hpog,. (19.66) 

Let us  note that the quantities cv0 and ,L30' entering into the formulas pre

sented, a r e  interrelated by a simple expression. To obtain it, let us integrate 
Eq. (19.41) with respect to p over the limits from zero to 1. As  a result we 
obtain 

(19.67) 

or,  after the substitution p / p  + p' = 1 - p ' / p  + p ' ,  

The desired relation follows from the last  two formulas: 

x 
a= f+-(av~-#lo*)f- (19.69)4 


Let us consider two special cases of Eq. (19.65), determining the planar
albedo. 

1. Let us assume that the optical thickness of the atmosphere is infinitely 
gTeat (T = ..). In this case the function q(p)  is determined by Eq. (19.16), and /254
$(p) = 0. Therefore Eq. (19.65) assumes the form 
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But from the relation (19.69) in  the case given (i.e. , for Po = 0) we obtain 

-
Q =-2 (i-1 3  -A) .  (19.71)A 

Consequently, instead of (19.70) we have 

(19.72) 

2. We will assume that pure radiation scattering occurs in the atmosphere, 
i. e. , h = 1. In the case cited, as follows from (19.69) 

cro=2-p84 (19.73) 

therefore 

C = 1-Bo(a1 + PI).  (19.74) 

It is easy to see that Eq. (19.65) can now be rewritten in  the form 

(19.75) 

In the study of planets, the so-called spherical albedo, representing the 
ratio of the energy reflected by the entire planet to the energy incident on the 
planet from the Sun, is used in addition to the planar albedo. If the planar al
bedo is known, then it is easy to find the spherical albedo also. 

Let us  denote the planet radius by R (Fig. 25). Then the energy, striking 

the planet from the Sun, will be equal to nR2nF. On the other hand, denoting the 

Ie

I 

Figure 25. 

distance of a given point on the planet's disk 
from the center of the disk by r, we find that 
the energy reflected by the planet will be 

R 
equal to 2 ~ 1  

0
A1(pO)nFrdr. Since r d r  = R2 p 

0 
dpO, then the last expression can be rewrit
ten in the form 

i 

2.dP;rFJ A ,  (m)hdclo, 
0 

Therefore, denoting the spherical albedo by 4, we obtain /255 

(19. 76) 
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Substituting (19.65) into (19.76), we obtain 

A
A. =C+.-

1-A--&(2--Xa0))fh+?~floa# (19.77) 

where C is determined by Eq. (19.66). 

Let us apply the formula derived for  the spherical albedo to the two cases 
considered above. In the f i r s t  of these cases (i.e. for T~ = co ) we have 

-
A ,  = 1-2a111 - A ,  (19.78) 

and in the second (i.e., for  h = 1) 

A , = 1 -
(1 --A) (i-C )  

(19.79)1-AC 

To calculate the quantities A1(pO) and A, it is necessary to have tables of 

the functions q(p) and $(p) and of their zero and first moments. Such tables are 
contained in a number of papers, in particular the paper of Sobouti [6]. 

Listed in Table 24 are the values of the spherical albedo, found from Eq. 
(19.79), i. e. for the case when pure light scattering occurs in an atmosphere 
o� optical thickness T~ and the atmosphere is bounded by a surface with albedo A. 

TABLE 24. SPHERICAL ALBEDO A, 

1 A 

I 
0 0,00 0,10 0.20 0,30 0,40 0,80 0.90 1.00 
0.1 0.08 0,17 0.26 0,34 0,43 0.80 0.90 1.00 
0,2 O , f 5  0,22 0,30 0,38 0.46 0.81 0.90 1.00 
0.3 0.21 0.27 0,34 0,41 0,48 0.81 0.90' 1.00 
0,s 0.30 0,35 0,40 0.46 0.52 0,82 0.90 1. 
1.0 0,45 0.48 0.51 0,55 0,GO 0,83 0.91 1,23 
2.0 0.61 0.63 0 ,65  O,G7 O,G9 0,s 0.92 1.00 
3.0 0.70 0,71 0.72 0,73 0,75 0.86 0.92 1.00 
00 1.00 1,oo , 1.00 4.00 1.00 - .  . . . .  1.00 1.00 1.00 

Comma represent decimal points. 

20. Optical Properties of Planetary Atmospheres
1. The Venusian atmosphere. With the aid of light scattering theory, the /256-

results of photometric observations of the planets can be interpreted. The opti
cal properties of planetary atmospheres can be determined by comparing theory 
with observations. Let us do this first for  the Venusian atmosphere [7]. 
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Since the planet's surface is not visible through the Venusian atmosphere, 
then as an approximation it is assumed that the optical thickness of the atmos
phere is infinitely great (T0 = CO). To determine the other quantities character
izing the optical properties of the atmosphere (in particular, the scattering indi
catrix x(y) and the parameter A ) ,  the observed brightness distribution over the 
planetary disk for different phase angles must be used. Especially large amounts 
of observational data can be obtained for Venus since in this case the phase angle 
(i.e., the angle at  the planet between the directions to the Sun and Earth) assumes 
all possible values-from 0" to 180". Conclusions about the optical properties of 
the Venusian atmosphere can also be drawn on the basis of the curve of variation 
of the planetary brightness with phase angle, which we will now do. 

Let us find the theoretical relationship between the stellar magnitude m of 
the planet and the phase angle a. Let us denote byp0 the cosine of the angle of 

incidence of sunlight at a given point of the planet, by p-the cosine of the reflec
tion angle and by q-the difference in the azimuths of the incident and reflected 
beams. Let us introduce the planetocentric coordinates w and $ (Fig. 2 6 ) .  The 

quantities p0 ,p, cp a re  obviously related 
to w. 11, and a! by the formulas 

Let 7rF be the illumination of an area 
perpendicular to the sunlight a t  the upper 
boundary of the planet atmosphere, and 
p(p, p

0
, cp)-the atmosphere brightness co

efficient. Then the intensity of the radia
tion, diffusely reflected by the atmosphere, 
will be equal to Fp(p, p0 , @p0, and the 

Figure 2 6 .  amount of energy coming from the area 
element da  in unit solid angle will be equal 

2
to Fp(p, p0 , q)pp0da. Since do = R  cos 11, d $dw, 

where R is the planet radius, then this amount of energy can be written in the form 

To obtain the total amount of energy coming from Venus toward Earth in unit 
solid angle, the last expression must be integrated with respect to $ over the 
limits from - 7r/2 to + 7r/2 and with respect to w over the limits from a - 7r/2 to 
7r/2, i. e. , from the terminator to the edge of the disk. Denoting the distance 
from Venus to Earth by A ,  for the illumination of Earth from Venus we obtain 

-I -n 
t 
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2
The illumination of Earth from the Sun is obviously equal to Es = nF(r /r ) ,1 2  

where r1is the distance from the Sun to Venus and r2 is the distance from the 
mo-mSun to Earth, and EV/ES=2.512 , where mg is the stellar magnitude of the 

Sun. Therefore we obtain 

Equation (20.3) gives the desired theoretical dependence of m on a ,  i. e . ,  
it enables one to construct the theoretical curve of planet brightness. The ex
pression for  p ( p ,  p0 cp) must be substituted into Eq. (20.3) and Eqs. (20.1) must 

be used. Since the brightness coefficient p ( p ,  p0, cp) depends on the quantities 

x(y) and A ,  then these quantities can be determined by comparing the theoreti
cal and observed brightness curves. The relation 

(20.4) 

must also be taken into consideration; (20.4) expresses the normalization con- /258
dition of the scattering indicatrix. 

To determine the theoretical brightness curve, i t  is convenient to isolate, 
in the expression p ( p ,  p0 , cp), the term that takes f i r s t  order scattering into ac

count. In this case we have 

(20.5) 

where y = T-a and A p  is a term that takes higher order  scattering into account. 
Since the exact expression for the quantity A p  for an arbitrary scattering indi
catrix is very complex, we will determine this quantity approximately, retain
ing only the first two terms of the Legendre polynomial expansion of the scat
tering indicatrix. In other words, let us  find the quantity A p  not for the actual 
scattering indicatrix x(y ) ,  but for the scattering indicatrix 

4 Y )  = + 21 m y ,  (20.6) 
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where 

(20.7) 

As shown before, the brightness coefficient p ( p ,  po, p) for  a scattering 

indicatrix in  the form of Eq. (20.6) is given by Eqs. (19.18)-(19.20). Using 
them, we obtain 

2 'POo (p)pQo(m)-t f ~ i o  ~~A p = -
4 

(p)ylo(!b)- 3 + 

P + W  

+?hi c p i l ( P ) q i l ( P o ) ~ s c p + ~ ~ ~  (20.8)
9 

P+Cb 

0 0 1
where the auxiliary functions 'p0 ( p ) ,  'p1 (p)and 'pl (p)are defined by Eqs. (19.21)

(19.23). As already stated, these functions have been tabulated. Let us also 
note that when the role of pure absorption is small in the atmosphere (i.e., for 
h values near l),the following asymtotic formulas follow from Eqs. (19.21) and 
(19.22): 

(20.9) 

(20.10) 

where q(p) is a function defined by Eq. (19.16) for  h = 1. Equations (20.9) and /259
(20.10) can be used in the case of Venus since the albedo of this planet is very 
high (about 0.7) and, consequently, the quantity 1-h is very small. For a spher
ical scattering indicatrix this is seen from Eq. (19.78), and for  a forward-
elongated scattering indicatrix the quantity 1-h will be even smaller. 

Let us  now substitute Eq. (20.5) into Eq. (20.3). The result  of this sub
stitution can be written in  the form 

where the following definitions are introduced 

n o c a  a (20.12) 
=-(1.-sin -tg --In ctg-)

16 2 2 4 '  
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g(a)= $ c o s o c o s ( o . - o ) m i ~ ~Apcossgdg, (20.13)
E 

(20.14) 

The left side of Eq. (20.11) is determined from theoretical data, and the 
right side depends only on observational data. If these data are known, then, 
using Eq. (20:ll) as well as Eqs. (20.4) and (20.73, one can find the quantities 
x(y) and A. 

The dependence of the function h(a!) on the phase angle a! is specified by the 
observed curve of planet brightness variation. This curve has been determined 
by a number of authors for  Venus. For  example, on the basis of Mueller's data 
the visual stellar magnitude of Venus can be represented in the form 

m = -4.71 +0.01322 a +0,000000 425 as (20.15) 

in the interval from a! = 24" to a! = 156" when the distance from Venus to earth is 
one astronomical unit. 

The scattering indicatrix in the Venusian atmosphere, determined by the /260
method cited, is given in Table 25. The average of the values obtained by Muel
ler and Danzhon was taken for the quantity m. For the given scattering indica
trix, the quantity x 1' defined by Eq. (20.7) and characterizing the elongation of 

the scattering indicatrix, was equal to x1 = 1.43. The albedo of the particles in 

the Venusian atmosphere was found equal to h = 0.987, i. e. , very close to 1. 
The scattering indicatrix in the Earth's atmosphere (determined by the method 
described below) is presented in the same table for comparison. 

TABLE 25. SCATTERING INDICATRICES IN THE VENUSIAN 
AND EARTH ATMOSPHERES 

Commas represent decimal points. 

A s  seen from Table 25, the scattering indicatrix in the Venusian atmos
phere is very severely elongated in the forward direction (being considerably 
more than the scattering indicatrix in the Earth's atmosphere). This means 
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that light scattering in the Venusian atmosphere is done primarily by large par
ticles. The Venusian atmosphere does, of course, contain some molecules 
(spectroscopic studies indicate this). However the role of molecular light scat
tering is not large in the Venusian atmosphere since its scattering indicatrix 
differs considerably from the Rayleigh scattering indicatrix, If it is assumed 
that the Venusian atmosphere consists of a cloud layer and a gas layer above it, 
then on the basis of what has been said the optical thickness of the gas layer 
must be very small. 

The last conclusion is also confirmed by the results of studies of the po
larization of the light from Venus. Observations have shown that Venusian ra
diation is only slightly polarized (not exceeding 4%). The change in the degree 
of polarization with phase angle has been determined. This change cannot, how
ever, be explained by Rayleigh light scattering in a gas layer. Therefore it 
must be assumed that polarization of the light of Venus occurs primarily during 
the scattering by large particles. 

2. The Martian atmosphere. The surface of the planet M a r s  is quite vis
ible through its atmosphere so that one can assume that the optical thickness of 
the atmosphere in the visible portion of the spectrum is less  than unity. On the 
basis of photometry of M a r s ,  conclusions can be drawn about the optical prop
erties of its atmosphere and surface. In some respects, however, the study of 
M a r s  is more difficult than that of Venus since its phase angle only varies with
in the limits from 0" to 47". Therefore, in particular, i t  is impossible to com
pletely determine the scattering indicatrix in the Martian atmosphere. 

Mars is usually observed at opposition time, i. e. , when the phase angle 
is close to zero. At such periods many investigators have photographed Mars 
in various lines. This has made it possible to determine the brightness distri
bution over the planet's disk within a fairly broad range of wavelengths. 

In interpreting Mars observations, in a first approximation it can be as
sumed that only single scattering of light occurs in the atmosphere. In such a 
case, as seen from Eq. (19.3), the function S, representing the ratio of the 
emission coefficient to the absorption coefficient, is equal to 
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(20.16) 

Substituting this expression into Eq. (19.25), we obtain the following formula 
for the brightness coefficient, caused by f i rs t  order scattering: 

(20.17) 

In Eq. (20.17), however, the reflection of light by the planet's surface is 
ignored. We will assume that the surface is illuminated only by direct sunlight 
and reflects the radiation orthogonally with an albedo A. Then the intensity of 
the radiation, reflected from the surface and leaving the atmosphere at  an angle 
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of arccos p to the normal will obviously be equal to 

Therefore the expression for the brightness coefficient, when light reflection by 
the planet's surface is taken into account, assumes the form 

Applying Eq. (20.18) to the planet at opposition, we must set po = p, q =  T, /262 
y = T. Consequently, in the case given we have 

(20.19) 

This formula defines the brightness coefficient at  an angular distance of arccos 
p from the center of the disk. 

Equation (20.19) is also usually used in the interpretation of photometric 
observations of M a r s  (see [81). Since the quantity p(p,  p, n) is known from ob
servations, then, using this formula, one can attempt to find the unknown quan
tities hx(T), T0 and A (assuming they do not depend on p) .  In a first approxima

tion true absorption in the atmosphere can be assumed to be absent and the scat
tering indicatrix is Rayleigh, Le . ,  it is assumed that hx(n) = 3/2. In such a 
case only two quantities-the optical thickness T0 of the atmosphere and the sur
face albedo A-need to be matched for there to be agreement of the theoretical 
and observed values of the brightness coefficient at  the planet disk. 

With the method cited it was found that in the visible portion of the spec
trum the optical thickness of the Martian atmosphere is about 0.03, i. e . ,  about 
10 times less than the optical thickness of the Earth's atmosphere. Moreover, 
values of about 0.1-0.3 (different for the "continents", "maria" and "polar 
caps") were obtained for the surface albedo of the planet. 

The values of T0 and A, found for M a r s ,  are  strongly dependent on the 

wavelength. The quantity T0 increases from the red to the violet portion of the 

spectrum. This increase, however, occurs more slowly than -r0-v 4 , which is 
the case for purely molecular light scattering, so that it must be assumed that 
light scattering by large particles plays some role in the Martian atmosphere. 

For those spectral regions in which the optical thickness of the atmosphere 
is of the order of unity and greater, Eq. (20.18) cannot be used since in this case 
higher order scattering must be taken into consideration. An exact expression 
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for the brightness coefficient, valid for any value of T ~ ,was derived above. It 
is given by Eq. (19.39) for A = 0 and by Eq. (19.59) for A # 0. In deriving these 
formulas it was assumed that the light scattering is isotropic. With the aid of 
these formulas, however, an approximate expression can also be derived for the 
brightness coefficient for an arbitrary scattering indicatrix. In this, f i rs t  order 
scattering will be taken into precise account, and higher order scattering-ap- /263-
proximately, with it being determined for a spherical scattering indicatrix rath
er than the given one. In this case we obtain the expression 

-+&)
I 1 - e  

p(p, po, q)=p f v )  ---- 4- Aofu-4).. (20.20) 

for the brightness coefficient, where, on the basis of Eqs. (19.39) and (19.59), 

(20.21) 

Equation (20.20) can be used, in particular, for studying the radiation of 
M a r s  in the violet portion of the spectrum. When M a r s  is observed in violet 
light, the details which are seen in red light are usually not seen, but some
times they become pronounced. On this basis i t  was concluded that particles 
with strong light absorption in the violet portion of the spectrum are present in 
the Martian atmosphere, but sometimes the number of these particles decreases 
and the atmosphere clears up, The existence of a 'Iviolet layer" in the Martian 
atmosphere is presumably explained by the fact that it consists of dust or  car
bon dioxide crystals (molecules of which have been detected spectroscopically 
in the Martian atmosphere). 

3. The Earth's atmoqhere.  The optical properties of the Earth's atmos
phere have been studied extremely thoroughly and the results are discussed in 
many monographs (see, for example, [9] and [lo]). Here we will discuss only 
those properties of the Earth's atmosphere which are determined on the basis 
of the simplest photometric observations and with the aid of the formulas of 
light scattering theory presented in the foregoing section. 

The optical thickness of the Earth's atmosphere is found most simply by 
measuring the intensity of the solar radiation, penetrating the atmosphere, at  
different solar zenith distances. This intensity is determined by the formula 

where I
0 

is the solar radition intensity a t  the upper boundary of the atmosphere. 

At least two measurements of the quantity I at different solar zenith distances 
do a re  required (in order to eliminate Io) to determine the optical thickness T

0 
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of the atmosphere with the aid of Eq. (20.22). For a clear sky the optical thick
ness of the atmosphere in the visible portion of the spectrum is about 0.3 ,  with /264 
its value increasing with a decrease in wavelength. The latter fact, as is known, 
explains the reddening of the Sun as it approaches the horizon and the blue color 
of the sky. The relative role of light scattering by molecules and by large parti
cles on the Earth's atmosphere can be judged from the deviation of the wavelength 
variation of T0 from the T0 - v4 law, 

A measurement of the brightness distribution over the sky provides the pos
sibility of finding the scattering indicatrix in the atmosphere. To do this we must 
make use of the formula defining the intensity of the radiation, diffusely trans
mitted by the atmosphere, or its corresponding brightness coefficiento(7, T ~ ,q). 

If only first  order scattering is taken into consideration, then Eq. (20.16) must 
be substituted into Eq. (19.26) in order to find the quantity a@, po, cp). As a re
sult we have 

(20.23) 

Scattering of higher orders can be taken into account just as in Eq. (20.20), 
i. e. , for a spherical scattering indicatrix. In this case, instead of Eq. (20.23) 
we obtain 

(20.24) 

where, as follows from Eqs. (19.40) and (19.60), 

(20.25) 

The scattering indicatrix of the Earth's atmosphere, found in the manner 
cited (with some other formula used for the quantity Aa), is given in the last line 
of Table 25. In the case given it was assumed that h = 1. The considerable dif
ference between the derived and the Rayleigh scattering indicatrix is explained 
by the presence of a large number of large particles, besides molecules, in the /265 
atmosphere (dust, water droplets, etc. ). 

The determination of the optical properties of clouds is also of considerable 
interest. For solid clouds it can be assumed that light scattering occurs in a 
plane layer whose optical thickness is very great. In this case only radiation 
that has undergone a very large number of scatterings reaches an observer 
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standing on the earth 's  surface. Therefore the determination of the optical prop
erties of clouds (characterizing light scattering in  a volume element) involves 
considerable difficulties. 

As an  example, let us  apply Eq. (20.24) to a cloudy sky. For  70 >> 1the 

first term on the right side of this formula is negligibly small, and simple as-. 
ymptotic formulas can be derived for the second term (see [3]). In particular, 
for  A = 1and A = 0 we have 

(20.26) 

where q ( p )  is a function defined by Eq. (19.16) (for h = l),and b = 2%/a1, where 

al and "2 are the first and second moments of this function. Calculations give 

b = 1.42. From Eq. (20.26) i t  is seen that the relative brightness distribution 
over a cloudy sky is determined by the function cp(p), i. e. , 

- cp(P). (20.27) 

As shown in Section 3, the relative brightness distribution over the stellar disk 
is also given by Eq. (20.27). The result obtained is entirely understandable 
since in both cases we are dealing with light scattering in a medium consisting 
of plane-parallel layers for radiation sources at a very large optical distance 
from the boundary. 

If A # 0 ,  then to determine the quantitym(p, po) we must find the functions 

M(p) and N(p). For h = 1, as seen from formulas (19.61), (19.62) and (19.73), 

N P )  = 1- M b L  (20.28) 

For  70 >> 1substitution of (20.26) into (19.57) yields 

(20.29) 

where it is taken into consideration that a1 = 2 / 6  (see Section 3). Using Eqs. 

(19.56) and (19.58), as well as the last two formulas, we obtain 

(20.30) 

Writing the quantity m(p, po)  in  the form 

(20.31) 
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and substituting the expressions obtained for  the quantities N(p), M(p) and C in
to Eq. (20.31), we obtain 

(20.32) 

Similar formulas for  the quantity g ( p ,  p0, cp) can be derived even in more 

complex cases, i. e. , for  arbitrary values of h and different scattering indica
trices. Some results in this direction have been obtained by S. Piotrowski Ell]. 
Formulas can also be given for the brightness coefficient p(p,  p0, cp), character

izing the brightness distribution of clouds for  observations from above. The 
quantity p(p,  po, cp) is approximately determined by Eqs. (20.5) and (20.8), which 

we used for  studying Venus. A comparison of theoretical and observed values 
of the brightness coefficients o(p, p0,q) and p(p,  p0, cp) makes it possible to ob

tain information about T0' h and x(y)  for clouds. 

4. Lnterpretation of planet spectra. The spectroscopic study of planets 
can give very valuable information about planetary atmospheres. Such a study, 
however, represents considerable difficulty. In part  this is caused by the fact 
that planet radiation occurs because of the scattering of solar radiation by them 
and therefore all the lines of the solar spectrum a re  contained in planet spectra. 
Moreover, telluric lines, arising from the passage of the radiation through the 
earth 's  atmosphere, are also present in planet spectra. This complexity of 
planet spectra severely hinders the identification of lines forming in the planet's 
atmosphere. This refers especially to the lines of gases contained in the earth 's  
atmosphere (in particular, oxygen and water vapor). The presence of these gases 
in  a planet's atmosphere can be judged only from an enhancement of the telluric 
lines. From what has been said it is seen how important i t  is for planet spec
troscopy to take astronomical instruments beyond the earth 's  atmosphere by 
means of artificial satellites and rockets. 

Let u s  present some results of planetary spectral observations made from 
the earth 's  surface. In 1932 Adams and Dunham discovered carbon dioxide (eoz) 
gas absorption bands in  the infrared portion of the Venusian spectrum. As  lab
oratory studies have shown, bands of the same intensity are produced when ra
diation passes through a 100-1000 m thick gas layer a t  a pressure of 760 mm 
and a temperature of 0°C. Recently weak oxygen and water vapor absorption 
bands have also been detected in the spectrum of Venus. Kuiper discovered 
carbon dioxide absorption bands in  the spectrum of Mars .  The equivalent gas 
layer thickness under normal conditions, producing such bands, is equal to 4.4 
m. Methane (CH4) and ammonia (NH3) absorption bands are present in the spec

t r a  of Jupiter and Saturn. A few years ago H2 lines, produced by quadrupole 

transitions, were also found in the spectrum of Jupiter, attesting to the pres
ence of large numbers of hydrogen molecules in the planet's atmosphere. The 
spectra of Uranus and Neptune contain strong methane bands and weak molecu
lar hydrogen bands. It should be noted that some gases do not appear spectro
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scopically in the spectral regions that are accessible to observation. Among 
these, for example, is molecular nitrogen which apparently exists in large quan
tities in planet atmospheres. 

The same formulas, which were used above in the interpretation of photo
metric data about planets, can be used for a quantitative interpretation of planet 
spectra. We will now write down expressions for the radiation intensity within 
a planet spectral line in some very simple cases. 

Above we assumed that scattering and true absorption of light in a contin
uous spectrum occur in each volume element of the atmosphere (due to the pres
ence of molecules and large particles in the atmosphere). The scattering coef
ficient was denoted by ha, and the t rue absorption coefficient by (1-A)cY, where 
h is the particle albedo and a is the absorption coefficient. Now let us assume 
that true spectral line absorption also occurs in each volume element in addition 
to the processes mentioned. We will neglect scattering of light in the lines (this 
obviously cannot be done for the resonance band). Let us denote by CY the true 
absorption coefficient at frequency v within a line. V 

With the notations that have been adopted the radiative transfer equation 
in a spectral line is written in the form 

(20.33) 

where 

(20.34) 

and 7 is the optical depth at  frequency v, i. e. ,  /268
V 

0 

r v = s  (a+++. (20.35)
r 

For simplicity in Eq. (20.34) it is assumed that the light scattering is isotropic.' 

Introducing the notation 

.(20.36) 

instead of Eqs. (20.33) and (20.34) we obtain 

tu. 
W S  6-=I,  -s, (20.37)

dT, 
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(20.38) 


where 

(20.39) 


We see that Eqs. (20.37) and (20.38)formally agree with the Eqs. (19.10)
and (19.11) considered earlier. Outside a spectral line, i. e., when a!

V 
= 0, 

T = T and h = . A ,  the first set of equations passes over to the second. v 

Let us first consider the case when the continuous spectrum optical thick
ness of the atmosphere is an order of magnitude less than unity. In this case, 
on the basis of Eq. (20.18), the intensity of the continuous spectrum radiation 
coming from the atmosphere is equal to 

~. 

1 4  U + h  
+ A e  '* ]Fp, 

where 
0 

A is the albedo of the planet surface. Replacing, here, h by h v and T~ 

by T~ , we obtain an expression for the intensity of the radiation coming from 
the atmosphere at frequency v within a spectral line: 

The ratio of these intensities, i. e., the quantity /269 

(20.42 

characterizes the absorption line profile at an angular distance of arccos ,u from 
the center of the planet disk. 

If the continuous spectrum optical thickness of the atmosphere is very
small ( T ~- 0), then from the formulas presented it follows that 

(20.43) 


This formula expresses the fact that an absorption line ar ises  from the passage 
of a ray through the atmosphere, its reflection from the planet surface and a 
second passage through the atmosphere toward the observer. Therefore the line 
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has the same residual intensity as when radiation passes through a gas layer 

with an optical thickness T v 
0( l /p  -k l/po). In the case given the "equivalent gas 

layer thickness", found from observations, directly characterizes the amount 
of gas in the atmosphere. Equation (20.43) is obviously applicable to the red 
portion of the Martian spectrum. 

Let us  now consider the case when the optical thickness of the atmosphere 
is very large (we will assume T~ = CO). Let us assume the quantities h and h v 
are constant in the atmosphere. As follows from Eq. (19.15), the intensity of 
the continuous spectrum radiation leaving the atmosphere is equal to 

(20.44) 

where by cph(p) we mean the function defined by Eq. (19.16). Replacing h by hy, 
we find that the intensity of the spectral line radiation coming from atmosphere 
is given by the formula 

(20.45) 

Substituting (20.44) and (20.45) into (20.42), we obtain 

(20.46) 

We will assume that the quantities h and h are  close to 1. Then, as fol- /270-V 
lows from Eq. (20.9) for x1 = 0, the function cph(p) is represented in the form 

(20.47) 

where the fimction cpa(p )  for h = 1is designated @p). A similar expression can 

also be written for the function v (p ) .  Substituting these expressions into Eq. 

(20.46) and neglecting terms of the order of l - h  and l -h  , we obtain v 

Obviously, in this case the "equivalent gas layer thickness", obtained from ob
servations, no longer has the simple physical meaning i t  had in the case of Eq. 
(20.43). Using the expression derived for the quantity rv (p ,  po), one can de
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termine the equivalent absorption line width from the formula 

(20.49) 


Since the line absorption coefficient a
V 

is proportional to the concentration n of 

absorbing molecules, Eq. (20.49) gives the dependence of W on n (more precise
ly on n/a). Therefore a comparison of the observed and theoretical values of W 
allows one to find the molecule concentration n in the planet atmosphere. 

If Eq. (20.49)is applied to the different lines of a molecular band, then the 
relative number of molecules in different rotational-vibrational levels can be de
termined. Assuming that a Boltzmann distribution of excited molecular levels 
is established because of collisions, one can determine the gas temperature. In 
this manner Chamberlain and Kuiper [12] determined the temperature in the Ven
usian atmosphere from C02 absorption bands; it turned out to be equal to 285°K. 

Equation (20.48) for the quantity r (p,  po) was used in this temperature determin-
V 

ation. In other words, i t  was assumed that molecules and large particles a re  
mixed a t  a constant ratio in the atmosphere. This assumption is evidently ap
proximately true since the dependence of the equivalent width of the C02  band 

on the phase, calculated on the basis of it, agrees with the analogous dependence 
obtained from observations. 

21. Structure of Planetary Atmospheres 

1. Planetary temperatures. In the study of planets other observations, 
besides the observations in the optical region of the spectrum considered above, 
a re  made. Very important among these a re  observations for the purpose of /271  
measuring planet temperatures. Before reporting the results of such measure
ments, let us ascertain what temperatures should be expected on the planets. 

Let us assume that the sunlight illuminates an absolutely black plate or
iented perpendicular to it. If L is the solar luminosity and r is the distance to 
the plate from the center of the Sun, then the plate illumination is equal to 

(21.1) 

The plate absorbs the solar radiation and re-emits it in accordance with Planck's 
law with a temperature T1, defined by the condition 

E = UTi'. (21.2)  

Since 

L =h?@T,', (21 .3)  
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where rQis the Sun’s radius and Te is i ts  effective temperature, then from the 

formulas that have been presented we obtain 

(21.4) 

Values of the temperature T1 for the different planets can be calculated 

from Eq. (21.4). These values of T1 are listed in the last column of Table 26. 

Values of the distance r in astronomical units and of the illumination E in cal/ 
/cm2-min are  given in the first  two columns (the value of E, listed in the table 
for the Earth, represents the so-called solar constant). 

TABLE 26. VALUES O F  THE QUANTITIES E AND TI 
FOR THE VARIOUS PLANETS 

r 

9

Mercury 0,387 12,7 63f Saturn 9,339 125
Venus 0,723 3,64 . 464 Uranus 19.19b 89 
Earth 1,Ooo 1.90 392 Neptune 30,071 72 
M a r s  1,524 0,81 316 Pluto 39.52 62
Jupiter 5,203 0,0702 173 

__ 

The value of T1 calculated from Eq. (21.4) characterizes the temperature 
of a planet devoid of atmosphere in the case when the Sun is at the zenith and the 
planet absorbs all the solar radiation incident upon it. If, however, the sunlight -
angle of incidence is a0 and the planet albedo in the visible portion of the spec-

/272 

trum (where the Sun radiates most of i ts  energy) is equal to A, then the temper
ature TI will obviously be defined by the formula 

T~=T,[
r$ ( I -A)  cos eo ‘‘4 

(21.5)f l  -1 -
In reality the angle 90 for a given point changes with time because of the planet 
rotation about its own axis and about the Sun. Therefore the temperature value 
T1also varies. To determine the temperature for a given point and a given in
stant of time, the slowness of the heating and cooling of the planet surface must 
also be taken into account. 

If the planet has an atmosphere, then the problem of radiative transfer 
through the atmosphere must be solved for a theoretical determination of the 
atmosphere and planet surface temperature. This problem will be considered 
below, but for now let us note that even then temperatures of the same order as 
those presented in Table 26 a re  obtained. Since these temperatures are much 

246 



I . , , , . , , . ,  I. I I I ,  . .I,. I I .  

less than the temperature of the Sun, the major portion of the energy radiated by 
a planet is not in the visible but in the far infrared portion of the spectrum (near
ly all planet radiation in the visible portion of the spectrum represents the reflec
tion of solar radiation). More precisely, the thermal radiation of a planet has a 
wavelength A m  determined from the Wien displacement law 

h T = 0.290 cm-deg,m 

and at temperatures, characteristic of planets, the values of Am are about 5-5Op. 

Sensitive thermocouples and special f i l ters,  transmitting radiation in the 
infrared spectral region, are used to measure the thermal radiation of the plan
ets. In doing this, use is made of the fact that the Earth's atmosphere has a 
"transparent window" in the 8-15 p interval. In calculating the temperature 
from the radiation measurements i t  is assumed that the energy distribution in 
the planet spectrum is given by Planck's formula. 

Let us present some results of planet temperature determinations (for 
more details see [131 and [14]). 

The thermal radiation has been measured as a function of phase angle for 
Mercury. This has permitted calculating the temperature a t  a sunlit point of the 
planet; it was found to be equal to 613°K. This temperature agrees well with the 
value of T1 determined from Eq. (21 .5)  for a0 = 0 and A = 0.07. 

The measured temperature of Venus is approximately equal to 230°K. Es- /273
pecially interesting is the fact that there is no marked difference between the 
temperatures of the illuminated and dark hemispheres. Since the Venusian at
mosphere has a large optical thickness, this temperature value refers  to the 
outer atmosphere layers. 

For M a r s  similar data are obtained for temperatures a t  different points 
of the disk and for different times. Let u s  only indicate that the temperature 
of a sunlit point at  perihelion is equal to 300" and a t  aphelion 273°K. The differ
ence between these temperatures agrees with Eq. (21 .5 )  (i.e. , with the change 
of T1 as a function of r). The measured temperature values are, however, 

somewhat lower than the values of T1 found from Eq. (21 .5 ) ,  which is evidently 

explained by the presence of an atmosphere around the planet. 

The measured temperatures of Jupiter and Saturn at sunlit points are equal 
to approximately 150" and 125°K respectively. The temperatures of the more re
mote planets are uncertainly determined. 

2.  Planetary radio emission. The study of planetary radio emission has 
considerable value for explaining the physical conditions on planets. Radio emis
sion of different wavelengths comes to us from different atmospheric layers, 
making it possible to draw conclusions about the change of physical conditions 
with depth in the atmosphere. For some wavelengths in the radio band the at
mosphere can be perfectly transparent although it is opaque in the optical portion 
of the spectrum. From the radio emission of these wavelengths informationabout 
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the invisible planetary surface can be obtained. At the present time Venus and 
Jupiter have been studied in most detail by radioastronomy methods. Such an 
investigation has led to a number of important and unexpected results. 

Especially interesting is the fact that a very high brightness temperature-
about 600°K-is obtained for Venus in  the centimeter band. This temperature is 
much higher than that found from the radiation in the infrared portion of the spec
trum (equal, as we know, to about 230°K). The radio emission of Venus is ap
parently thermal in  nature since it does not exhibit systematic variations and 
does not contain any appreciable polarized component. The most probable ex
planation for such a high temperature from radio emission observations is that 
i t  is the temperature of the planet's surface; surface heating, however, is caus
ed by the so-called "greenhouse effect" (which we will discuss below). 

In the millimeter band the Venusian temperature is about 300-400°K. Ac
cording to the interpretation that has been given, this is the temperature of in
termediate layers of the atmosphere. 

The radio emission observed from Venus depends on the phase angle, with /274
the temperature on the illuminated side of the planet being higher than on the 
dark. These results, however, are not very reliable. If they are confirmed, 
then from them one can conclude, in particular, that the rotational velocity of 
Venus about its axis is not very great since otherwise large temperature differ
ences could not be established between different points of the planet*. 

The radio emission of Jupiter is very complex. For  h < 3 cm the bright
ness temperature is about 140"K, i. e. , it is close to the temperature found from 
the radiation in the infrared portionof the spectrum. On this basis the Jovian 
emission a t  h < 3 cm can be assumed to be thermal. However, observations of 
the radio emission of Jupiter in the interval from 3 em to 70 em have shown that 
the intensity of this emission per  unit frequency interval depends slightly on the 
wavelength. Meanwhile the thermal emission intensity (for constant temperature 
and constant source dimensions) should decrease rapidly with an increase in 
wavelength since the thermal emission intensity is determined by Eq. (18.1). 
Therefore it was concluded that the radio emission of Jupiter in the band being 
considered is nonthermal in character. It is difficult to assume that this emis
sion is thermal and comes to us from layers with a different temperature since 
for h = 70 cm the brightness temperature is 50, 000", i. e. , very high. 

The assumption of the nonthermal nature of Jovian emission in the wave
length interval from 3 to 70 em is corroborated by the following important facts: 
1) the intensity of this emission varies with time, 2 )  this emission is linearly 
polarized (the polarization is about 30% a t  31-em wavelength, and the electric 
vector is approximately parallel to the planet equator), 3)  the dimensions of 
the emitting region are approximately three times greater than the optical diam
e ter  of Jupiter. The las t  fact deserves special attention because i t  lies a t  the 
base of the concept of the Jovian radiation belts (similar to the Earth's radiation 

._. 

*According to the latest  radar observations the Venusian period of rotation 
is 247 + 5 days. 
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belts discovered by means of artificial satellites). It is assumed that the radia
tion belts are formed by the capture of charged particles by the magnetic field 
of the planet and the observed decimeter radio emission of Jupiter is the mag
neto-bremss trahlung radiation of electrons, 

Observations also show that an intense sporadic radio emission comes from 
Jupiter. Radio emission bursts,  about 1sec  in  duration, are observed at wave- /275
lengths equal to a few tens of meters. This emission is polarized and appears 
at certain localized sources. The same mechanisms are proposed for explaining 
the sporadic radio emission of Jupiter as for explaining the sporadic solar radio 
emission, i. e. , magnetic bremsstrahlung radiation of electrons and the normal 
plasma oscillations. 

3. Planetary atmosphere models. The results of observations of planets
in different spectral regions (visible, infrared and radio band) serve as the basis 
for constructing planetary atmosphere models. Such models have recently been 
developed for  several planets (Venus, Mars ,  Jupiter). At the moment, however, 
their status is not completely certain, and therefore here let u s  only briefly con
sider, by way of an example, the models proposed for the Venusian atmosphere. 

In the development of a planetary atmosphere model some scheme of at
mosphere structure, i ts  chemical composition and energy transfer mechanism, 
is specified. The density and temperature distribution in  the atmosphere is de
termined through calculations. This allows one to compute the optical depths in 
the atmosphere for different frequencies, and then the intensities of the radiation 
coming from the atmosphere in different spectral regions. A comparison of the
oretical and observed radiation intensities provides the possibility of checking 
the analytical model. 

For  the Venusian atmosphere the greenhouse model, the essence of which 
is included below, is assumed to be the most probable. Solar radiation, incident 
on the atmosphere, is partially reflected by it, and partially transmitted through 
it (generally speaking, after multiple scatterings, which were discussed in Section 
19). The solar radiation, passing through the atmosphere, heats the surface and 
thermal radiation in the far infrared spectral region flows out from the latter. 
However, the optical thickness of the atmosphere is very great in the infrared 
region of the spectrum. Therefore a considerable portion of the infrared radia
tion returns to the surface from the atmosphere so that it is heated even further. 
A s  a result of the radiative transfer process and equilibrium condition is estab
lished whereby the thermal radiation energy, coming outward from the atmos
phere, is equal to the solar radiation incident on the planet's surface, Similar 
processes occur in greenhouses (in which, however, the glass does not absorb 
the thermal radiation coming from the ground so much as i t  prevents convection). 

I t  is easy to find an approximate temperature distribution in the atmosphere. 
Since the absorption of infrared radiation in the atmosphere occurs in molecular 
bands, the frequency dependence of the absorption coefficient is very complex. /276 
For simplicity let  us  introduce the average absorption coefficient and i ts  cor
responding optical depth 7. The amount of energy, incident on the planet's sur
face from the Sun, we will denote by El. This amount of energy, is transferred 

249 



outward through the atmosphere in the form of infrared radiation. We will as
sume that local thermodynamic equilibrium exists in  the atmosphere. Then the 
dependence of the temperature T on the optical depth T will be defined by the 
formula 

ac 
(21.7) 

written in analogy to Eq. (4.16), derived in the Eddington approximation in pho
tosphere theory. We have only replaced the radiant flux nF in the stellar photo
sphere by the radiant flux E1 in the planet's atmosphere. 

If the optical thickness of the atmosphere is denoted by T ~ ,then the tem
perature of the planet's surface will be equal to 

Ti= [ - - (T+, . I ) ]*4Ei 1 3 
(21.8) 

Equation (21.8), of course, is very crude and i t  only illustrates the action 
of the ''greenhouse effect". In reality, when considering radiative transfer through 
the atmosphere, the frequency dependence of the absorption coefficient, deter
mined by the assignment of chemical composition and physical conditions (i.e. , 
temperature and density), must be taken into consideration. The possibility of 
convective energy transfer in the atmosphere must also be taken into consider
ation. 

Sagan developed a greenhouse model applicable to the Venusian atmosphere 
(see [15]). He assumed that the atmosphere consists of C 0 2  and H20 molecules 
and selected their content such that the atmosphere opacity in the infrared por
tion of the spectrum led to a planet surface temperature of 600°K. According 
to this model, at  a height of about 40 km from the surface the temperature is 
equal to 220-235°K and clouds, consisting of ice crystals, a r e  formed at that 
height. The fact that the energy distribution in the infrared spectrum of the 
Venusian clouds differs little from the energy distribution in the spectra of lab
oratory-produced ice crystals is a point in favor of this conclusion, 

Figure 27 is a schamatic representation of the greenhouse model of the 
Venusian atmosphere, with those regions of the atmosphere from which radiation 
in different spectral regions reaches the observer being indicated by the arrows. 
Diffusely reflected sunlight in the visible portion of the spectrum and the infrar
ed  self-radiation of the atmosphere come to us from the clouds. Millimeterwave 
radio emission comes from atmosphere layers beneath the clouds, and centim
eter-wave-from the planet's surface. 

Opik proposed another Venusian atmosphere model to explain the same ob
servational data. It assumes that the planet's surface is heated to a tempera
ture of 600°K not by radiation, but by winds carrying energy from the upper at
mosphere layers to the lower. There is much dust in the lower atmosphere layers 
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and solar radiation does not reach the 
planet's surface. This atmosphere 
model is called the "eolosphereff 
(from the word f'eollf-wind). 

In both Venusian atmosphere 
models (greenhouse and eolosphere)
it is assumed that the temperature of 
the planet's surface is very high. 
Therefore if either model is correct, 
life, as we h o w  it on Earth, cannot 
exist on Venus. A third Venusian at
mosphere model-the ionospheric-
gives considerable chance for such 

Figure 27. 	 life. According to this model, the 
radio emission a t  3-21 cm with a 
brightness temperature of about 

600°K comes to us not from the planet surface, but from its ionosphere, above 
the cloud layer. The planet surface temperature can be considerably less than 
600°K. 

In order for the ionosphere to emit strong radio emission, its optical depth 
must be quite large. As we recall, the optical depth at  radio frequencies is de
termined by Eq. (18.9). From it it is seen that the value of T

V 
is inherently de

+
pendent on the value of the integral s n  n d r ,  taken over the entire ionosphere /278e 
thickness. As calculations show, the ionosphere can give the observed emission 
in 3-21 cm waves only in the case when the value of this integral will be of 

From this it follows that the density of free electronsthe order of ~ m - ~ .  

in the Venusian ionosphere must be several orders of magnitude greater than in 

the Earth's ionosphere. It is very difficult, however, to explain such a large 

value of ne' Ionization in the Earth's ionosphere is caused by ultraviolet solar 


radiation, but at  Venus the intensity of this radiation is only twice as large as at 

the Earth. In view of this, the possibility of ionization by the corpuscular stream, 

coming from the Sun, was considered. This stream does not reach the Earth's 

ionosphere (except at the polar regions) since it is deflected by the Earth's mag

netic field. If, however, Venus has a weak magentic field, then the solar corpus

cles can enter the upper layers of its atmosphere and cause ionization. However, 

much stronger corpuscular streams are required than those obtainable on the ba

sis of other data to explain high electron densities in the Venusian ionosphere. 


A derivation of the radio emission distribution over the planetary diskfrom 
observations can serve as one method of checking the validity of the proposed 
Venusian atmosphere models. If the ionosphere model is correct, then the emis
sion intensity must increase as one goes from the center of the disk to the edge 
because of the increased ionospheric path length. However, observations do not 
corroborate this, i. e. , they contradict the ionosphere model. Observations, 
made a t  the Pulkovo observatory at a wavelength of 3 cm, led to the conclusion 
that the Venusian disk darkens as one goes from center to edge. The same re
sult was also obtained from observations with the Mariner II space rocket at a 
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wavelength of 1.9 cm. Similar observations must be continued for the purpose of 
refining the results. 

4. Upper layers of the atmosphere. Purely gaseous layers, consisting of 
molecules, are present in the earth's atmosphere above the clouds, It is reason
able to assume that this is also the case for other cloud-covered planets (in par
ticular, Venus and Jupiter). The gaseous layers can be studied by different meth
ods. The polarimetric method, already described above, is one of these methods. 
Radiation becomes polarized through scattering by molecules, with the degree of 
polarization being close to unity at scattering angles close to 90". Therefore from 
a comparison of the polarization of the light of a planet with the polarizationcaus
ed by molecular scattering one can draw a conclusion about the role of the gaseous 
layer in radiation scattering. In this manner it is found that for Venus the optical 
thickness of the gaseous layer in the visible portion of the spectrum is very small 
(no greater than 0.03) .  For Jupiter polarization studies a re  made difficult by the 
fact that its phase angle only varies from 0 to 12". The detailed results of a study 
of the planets by the polarimetric method are  contained in the book by Dollfus [13]. 

The spectroscopic method of investigation of planetary atmospheres gives 
much more valuable results. A s  already stated, the molecule concentrations in 
the atmosphere and its temperature can be found by comparing the theoretical 
and observed equivalent line widths. Let us also note that the pressure in the 
atmosphere can also be determined by the method cited. This possibility is as
sociated with the fact that the equivalent line width depends not only on the con
centration of the mclccules being considered, but also on the concentration of 
all particles in the atmosphere (i.e., on the pressure), since the collisions of 
particles with molecules affects the line absorption coefficient. A pressure de
termination for the Venusian atmosphere was made from the C 0 2  bands. It is 
not completely clear, however, to what level of the atmosphere the results ob
tained must be applied. At  first it was thought that molecular bands arise only 
in the gas layer above the clouds, but, evidently, they are also formed in the 
clouds where true line absorption of light and scattering by large particles occur. 
In this case the determination of the optical properties of the above-the-clouds 
layer by the spectroscopic method is fraught with difficulties. 

Very important information on the structure of the upper layers of plane
tary atmospheres can also be obtained from observation of star occultations by 
the planets. When a planet passes in front of a star,  a gradual weakening of the 
stellar brightness occurs, caused by the passage of its radiation through more 
and more dense layers of the planetary atmosphere. The height dependence of 
the density in the atmosphere can obviously be found from the observed curve 
of stellar brightness variation. 

A s  elementary calculations show, the decrease in stellar brightness, when 
its  radiation passes through the planetary atmosphere, is primarily caused not 
by light absorption in the atmosphere but by the differential refraction effect. 
Parallel stellar rays, incident on the planetary atmosphere, diverge because of 
refraction in it. For an observer on earth, therefore, the illumination E from 
the star during its eclipse by the planetary atmosphere will be less  than the il
lumination E0 from the star when it is not occulted (Fig. 28). 
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Let us  find the ratio E/Eo. Let r be the distance from the center of the 

planet at which a stellar ray would pass in the absence of refraction. Because 
of refraction the ray is bent in the at
mosphere and upon its exit from the 
atmosphere it makes an angle 6 with 
the initial ray. If the distance be- /280 
tween two rays before entering the 
atmosphere is equal to dr ,  then for 
an observer on ear th  it will obvious

x1 f -1 ly be equal to 

Figure 28. (21 .9)  

where Z is the distance from the planet to Earth (let us note that d6/dr < 0). 
Since 

Eo dr = E ay, (21 .10)  

for the desired ratio of intensities we obtain 

(21.11)  

The quantity 6 is given as a function of r by the theory of refraction. As 
is known, the ray trajectory in the atmosphere is determined by the equation 

n ( f ) f s i n 6=r, (21.12)  

where 9 is the angle between the ray and the radius vector, and n ( r f )is the re
fractive index a t  a distance r '  from the center of the planet. Using Eq. (21.12), 
one can obtain the following formula for the quantity 6: 

(21.13)  

where r0 is the minimum distance of the ray from the center of the planet. 

In calculating the quantity 6 ,  we assume that the density in the upper layers 
of the atmosphere decreases exponentially with an increase in r', i. e . ,  

p (f)=p (R)e+-R), (21.14)  

where p is some constant and R is the radius of the upper boundary of the cloud 	 /281-
layer. Then the refractive index can be represented in the form 

n ( f )  = 1+ke-fW-R), 

where k is a constant, proportional to the quantity p(R). 

(21.15)  
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Using Eqs. (21.12) and (21. 15), and also taking into account the smallness 
of the quantity k in comparison with 1, from (21.13) we obtain approximately 

b = k~ZnfV3e-Mr-R? (21.16) 

We must substitute this expression for 6 into Eq. (21.11). As a result we 
obtain 

(21.17) 

From observations the quantity EO/E is obtained as a function of time which 
can be represented as a function of the distance y when the occultation of the s ta r  
by the planet is taken into consideration. Therefore we must replace the theoret
ical relationship (21.17) between the quantity EO/E and r by a relationship between 
E0/E and y. Differentiating (21.17) with respect to y and taking (21.10) into con

sideration, we obtain 

(21.18) 

Integration of this equation gives 

(21.19) 

The value of the parameter /3 can be determined from a comparison of the 
observed and theoretical dependence of EO/E on y. If it is assumed that the den

sity in the atmosphere changes in accordance with the barometric law, then 

(21.20) 

where p is the mean molecular weight and g is the gravitational acceleration in 
the atmosphere. Therefore the quantity p can be found from the quantity P with 
the aid of Eq. (21.20). This allows one to formulate some idea about the chem
ical composition of the atmosphere. 

The cited method of studying the upper layers of planetary atmospheres has 
been applied to Jupiter and Venus. In 1952 Baum and Code Qbserved the occulta

-1tion of the star u Aries by Jupiter and determined that p = 0.12 km . Assuming /282-
g = 2600 cm/sec 2 and T = 86°K for Jupiter, from Eq. (21.20) they found a value 
of 1.1 = 3.3 for the average molecular weight. Such a low value of p can be ex
plained by the fact that the upper layers of the Jovian atmosphere are composed 
primarily of molecular hydrogen and helium. 
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An occultation of Regulus by Venus was observed in 1959. Comparing the 
observed and theoretical stellar brightness curves, Vaucouleurs found that the 
"homogeneous atmosphere height" of Venus is equal to approximately 6 km, i.e., 

2 p rz 0.17 Inn-'. Since g = 850 cm/sec and T M 230°K for Venus, Eq. (21 .28)  
gives p M 38. This value of p does not differ greatly from the molecular weight 
of carbon dioxide gas ( p  = 44),  which has been detected spectroscopically in the 
Venusian atmosphere. 
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CHAPTER V 

GASEOUS NEBULAE 

The physics of gaseous nebulae is pertinent to a number of the most devel
oped branches of astrophysics. This is due to the extremely simple physical 
conditions iq nebulae: low density of matter and low radiation density. Under 
such conditions many processes occur in a t fpureffform, free of foreign influ
ences. 

The luminosity of gaseous nebulae is caused by the radiation of hot stars.  
A nebula absorbs the high-frequency stellar radiation and re-emits it in lower 
frequency quanta. The bright lines in nebular spectra arise in this manner. In 
principle, the bright lines in the spectra of Be and Wolf-Rayet stars, novae and 
other objects arise in the same manner (although more complex in some re
spects). Therefore the results of the study of gaseous nebulae are widely used 
in various branches of astrophysics. 

The conversion process, occurring in gaseous nebulae, of high-frequency 
stellar radiation into lower frequency quanta indicates a drastic deviation from 
thermodynamic equilibrium for  the nebulae. This sharply distinguishes nebulae 
from stellar atmospheres for  which the assumption of the existance of thermody
namic equilibrium proves to be adequate as a first approximation to reality. In 
the study of nebulae we will no longer be able to use the Boltzmann and Saha for
mulas for  calculating the numbers of atoms in different states and the Planck 
formula for  computing the radiation intensity a t  different frequencies, These 
quantities must be determined in  each separate case by a consideration of the 
elementary processes which occur in real nebulae. We will usually make use 
of the assumption that nebulae are stationary, i. e. , the distribution of atomic 
states and the radiation field in a nebula do not change with time. In this case, 
of course, we must know the probabilities of the various elementary processes 
(i.e. , the probabilities of photoionizations, recombinations, collisions, etc. ), 
which are calculated in  theoretical physics. 
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~~~22. Emission Mechanism of Nebulae 

/2841. Observational data. A thorough discussion of the results of observa- 
tions of gaseous nebulae is contained in  the books of B. A. Vorontsov-Vel'yami
nov [l], L. Aller [2] and G.A. Gurzadyan [3]. Now we will direct our attention 
to only basic facts. 

The gaseous nebulae in our Galaxy are divided into two groups. The so-
called planetary nebulae belong to the first group. When observed in a telescope 
they mostly appear in the form of circular o r  oval disks, resembling the disks 
of planets, and also in  the form of rings. A hot star, usually called the nucleus 
of the nebula, is at the center of the planetary nebula. Diffuse nebulae, not hav
ing a regular shape, comprise the second group. Stars of the early spectral 
classes (one o r  several) are observed in the diffuse nebula itself or  near it. 

The dimensions of individual planetary nebulae are not known with much 
accuracy because of parallax uncertainties. The average diameter of a plane
tary nebula amounts to about 10,000 astronomical units. Diffuse nebulae are of
ten much larger  in size. 

The spectra of gaseous nebulae consist of individual bright lines on a weak 
continuous background. The bright lines belong to hydrogen, helium, ionized 
helium, as well as several other atoms and ions. However, the 20-called prin
cipal nebular lines N 1and N2 with wavelengths of 5006 and 4959 A, respectively, 

are most characteristic of the spectra of gaseous nebulae. These lines, pre
viously unknown on Earth, were  assigned to the element "nebulium"; however, 
in 1928 Bowen [4] showed that they a r e  the forbidden lines of doubly ionized ox
ygen. Many other forbidden lines are also observed in  the spectra of gaseous
nebulae. 

The number of gaseous nebulae known a t  the present time amounts to a few 
hundred. The disks of many of the recently discovered planetary nebulae are not 
visible in a telescope and their nature was deduced from the form of the spectrum. 
They are either very small o r  very distant nebulae. The number of known diffuse 

nebulae has grown considerably as a result of the work of G. A. Shayn and V. F. 

Gaze [5]. By taking sky photographs in a narrow spectral region, including the 

H
CY 

line, they observed a large number of weakly luminous diffuse nebulae. 


In spite of the fact that the energy emitted by gaseous nebulae is contained 
predominantly in individual spectral lines, the nebular luminosities are very 
high. Thus, the average absolute photographic magnitude of planetary nebulae 
is equal to Mn = -0.5. It is important to note that planetary nebulae are, as a 
rule, considerably brighter +ban the nuclei themselves, i. e., M,-Mn > 0. Some

times this difference amounts to seven stellar magnitudes. On the average, how
ever, M,-M = 3. n 

The stars,  producing the luminosity of gaseous nebulae, belong to the ear
liest spectral classes. About half the nuclei of planetary nebulae possess type 

257 

/285 




I I I I I I  I l l  I I  


W R  spectra (however, these stars are different from the usual Wolf-Rayet stars 
of much lower brightness). About one-fourth of the nuclei of planetary nebulae 
have spectra without any noticeable lines. Calculations show that stars withhigh 
surface gravitational forces and high temperatures can exhibit such spectra (see 
Section 14). The remaining nuclei of planetary nebulae belong to spectral classes 
0 and Of. 

Diffuse nebulae shine because of the radiation of stars of spectral classes 
0, WR and BO, located in the nebula itself o r  near it. No diffuse nebulae, whose 
luminosity is caused by stars of spectral classes later than BO, have been ob
served. This is explained by the fact that the high-frequency radiation of these 
stars is inadequate to produce an observable nebular luminosity in the visible 
portion of the spectrum. 

As observations show, the material comprising planetary nebulae moves 
away from the nucleus, i. e., the nebulae a re  expanding. The nebular expansion 
velocities a re  equal to several tens of kilometers per second. Initially, the con
clusion about the expansion of planetary nebulae was based on spectral observa
tions. The emission lines in nebular spectra are relatively narrow at the edge
of the nebula and broader, or  even split, at  its center. When an expanding neb
ula is assumed, this is explained by the fact that a t  the edge of the nebula the line 
of sight is passing through that portion of i t  which is moving with a zero radial 
velocity, and at the center i t  passes through regions that are both approaching 
and receding from us. The latter aspect of the expansion of planetary nebulae 
was confirmed by a direct comparison of photographs of certain nebulae, obtain
ed at  intervals over several decades. This fact served as the basis for the hy
pothesis concerning the formation of a planetary nebula as the result of an ejec
tion of matter from its nucleus. 

2. Cause of nebular emission. As already stated, in gaseous nebulae high-
frequency radiation of stars is converted into lower frequency quanta. We must 
now ascertain what is the cause of this process. In order to do this, let us first 
consider the properties of the radiation coming from a star at a given point of 
the nebula. 

We will assume that the star radiates as an absolute blackbody of temper- /286 
ature T,. If the entire sky were completely covered with such stars,  the radia
tion density at a given point of the nebula would be equal to the radiation density 
in the presence of thermodynamic equilibrium, i. e., it would be expressed by 
Planck's formula: 

In reality, the radiation density in the nebula is much less  than p *. We will 
represent it in the form V 

(22.2) 
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where W is the so-called radiation dilution (attenuation) factor. It is obvious 
that 

(22.3) 

where D is the solid angle subtended at the observer by the star at a given point 
of the nebula (Fig. 29). Let us denote the star radius by r* and the distance from 

the point being considered to the center of the star-
by r. Since 

Figure 29. and sine0 = r*/r, then we obtain 

(22.4) 

At a point on the surface of the star, the radiation comes from a hemisphere.
Therefore in this case (i.e. , for r = r*) W = 1/2. 

For points at large distances from the star (i.e. , for r >> r*), from Eq. 
(22.4) we obtain 

W =-( r.1 q. (22.5)
4 r 

Let us  note that in this case the dilution factor can be represented as  the ratio of 
2the area m*' of the stellar disk to the area of a sphere of radius r, i. e. , 4nr  . 

The average radii of planetary nebulae a re  about 1017 cm, and the radii  of /287 
their nuclei-about 10

10 
cm. Therefore the radiation density in a planetary neb

ula is attenuated by about a factor of 1014 compared with the radiation density at  
the stellar surface. 

After integrating the relation (22.2) over all frequencies and making use of 
the Stefan-Boltzmann formula for the integrated radiation density in the presence 
of thermodynamic equilibrium, we obtain the following expression for the inte
grated radiation density in the nebula 

p = WaT.'.- (22.6) 

After representing the quantity p in the form p = aT14, we obtain 
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Since the temperatures of the stars producing the luminosity of nebulae are of 
the order of several ten thousand degrees and the values of W i n  nebulae, as we 
have just determined, are of the order of then the values of the tempera
ture T1, corresponding to the integrated radiation density in  nebulae, are only 

of the order of a few tens of degrees. 

Thus, the integrated density of the radiation coming from a star in the neb
ula is extremely small. On the other hand, as seen from Eq. (22. Z ) ,  the rela
tive frequency distribution of this radiation is the same as that coming from the 
star, i. e. , it corresponds to a very high temperature T,. Thus, the radiation 
coming from a star in the nebula is characterized by an immense discrepancy 
between the integrated density and the spectral composition. 

If radiation, possessing such a property, interacts with matter, then, as 
' 	is known from thermodynamics, a frequency redistribution of the radiation oc
curs  in the direction of establishing the most probable distribution. In other 
words, a conversion of higher frequency quanta into lower frequency quanta 
must occur. This provides a qualitative explanation of the radiation conversion 
process in gaseous nebulae. 

3. Rosseland theorem. Passing on to a consideration of the emission pro
cess of nebulae from a quantitative viewpoint, let  us  f i r s t  assume that the atoms 
have only three energy levels (1,2 and 3).  Of the various transitions occurring 
under the influence of stellar radiation, let us consider the two mutually opposed 
cyclical processes: 

1 . 1 - + 3 + 2 + i ,  11. i - t2 -+3+1 .  

The f i r s t  of these processes is associated with the absorption of one quan- /288
tum of frequency v 13 and with the emission of two quanta of lower frequencies 

v 12 and v23' and the second-with the absorption of two quanta of frequencies 

v12 and v23 and the subsequent emission of one quantum of higher frequency v 13' 

Let us find the number of processes of the f i rs t  and second kind occurring 
in a unit volume of the nebula in 1see. To do this, we utilize the Einstein trans
ition coefficients Aki, B.ik and BIn. and we denote the radiation density of frequen

"ik by Pik" 

3
If n1is the number of atoms in the first state in 1cm , then the number 

3of transitions from the f i r s t  state into the third, occurring in 1em in 1see, 
will be equal to nf B13p 13' Transitions (spontaneous and induced) are possible 

from the third state, both into the f i r s t  state and into the second. The fraction 
of transitions into the second state of interest to us  is equal to 
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Of the atoms appearing in the second state, a portion jumps backward into the 
third state, when radiation is absorbed, and a portion jumps into the first state 
(spontaneously or under the influence of radiation). The ratio of the number of 
transitions from the second state into the first to the total number of transitions 
from the second state is equal to 

Thus, for  the number of processes of the first kind we obtain 

(22.8) 

The number of processes of the second kind is found in an analogous man
ner. It is found equal to 

(22.9) 

The following formula for the ratio of the number of processes of the sec- /289
ond kind to the number of processes of the first kind results from Eqs. (22 .8)  
and (22.9):  

(22.10) 

To simplify the formula that has been derived, let us introduce the Ein
stein ratios: 

(22.11) 

where 

(22.12) 

and g. is the statistical weight of the i-th state (see Section 8). Moreover, let 
1 

us write the quantity pik in the form 
-

Pih = W'Jikpih, (22.13) 
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where 

(22.14) 

As a result, Eq. (22.10) is transformed to 

(22.15) 

When W = 1, Eq. (22.15) gives 

(22.16) 

But v12 + v23 = v13' Therefore in the case given Nrr/NI = 1, just as one should 

expect. 

If W << 1, then, taking into account that the factor p12p23/p13 has a value 
of about unity, we obtain 

Nn 
- N  -w. (22.17)NI 

Thus, the ratio of the number of processes of the second kind to the number of /290-
processes of the first  kind turns out to be of the order of W. This result is us
ually called Rosseland's theorem. 

In planetary nebulae W N Therefore in the case given the number of 
processes of the second kind can be completely neglected compared with the num
ber  of processes of the first  kind. In other words, conversion processes of high-
frequency quanta into lower frequency quanta occur in comparably more frequently 
than the reverse processes. 

4. Determination of-sellar temperatures from the hydrogen lines. Above, 
we assumed that a nebula consists of atoms having only three energy levels. Now 
let us consider the emission of a real nebula consisting of hydrogen atoms. 

Because of the extremely small radiation density in nebulae the overwhelm
ing majority of the atoms are in the ground state. Therefore nebulae a re  opaque 
to radiation in the Lyman series and perfectly transparent to radiation in the Bal
mer, Paschen and other subordinate series. Thus, the nebula absorbs stellar en
ergy at frequencies of the Lyman series and instead emits quanta in the subordi
nate series (and, in  particular, in the Balmer series which we observe), which 
emerge unhindered from the nebula. When the optical thickness of the nebula is 
sufficiently great beyond the Lyman series limit, it will emit in the hydrogen lines 
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primarily because of the stellar energy beyond the limit of this series (since the 
energy absorbed by the nebula in the Lyman lines will be much less). 

More precisely, the nebular hydrogen emission process occurs in the fol
lowing manner. Hydrogen atom ionization, i. e. , a proton and free electron a re  
formed, occurs under the influence of stellar radiation beyond the Lyman series 
limit. After some period of time the free electron is captured by some proton.
Let us assume that the capture occurred in one of the high levels. The quantum
that thereby appears beyond the limit of the corresponding subordinate series 
leaves the nebula. Further, there follows a chain of %ascadet' electron transi
tions from level to level. Because of the extremely low radiation and matter den
sity in nebulae, this chain of transitions is not interrupted in the vast majority of 
cases. The quanta of the subordinate series lines formed during these transitions 
also leave the nebula. If, however, the electron passed into the first level, then 
the Lyman line quantum that is produced is absorbed in the nebula and the elec
tron is in the previous level again. Therefore from a given level (only if i t  is not 
the second) the electron sooner or later effects a transition that is not into the /291
first level. It is easy to understand that this chain of transitions must be termi
nated by a transition into the second level with the formation of a Balmer quantum 
and a subsequent transition from the second level into the first with the formation 
of an L

CY 
line quantum. The Balmer quantum escapes unhindered from the nebula. 

The L
CY 

quantum also escapes from the nebula after, however, a prolonged diffu

sion process. 

From what has been said i t  follows that one Balmer quantum and one La-

line quantum are necessarily formed from each Lyman continuous quantum ab
sorbed and converted by the nebula (and some number of quanta in the other sub
ordinate series can also be formed). 

We will now assume that the optical thickness of the nebula beyond the Ly
man series limit is appreciably greater than unity. In this case the nebula will 
absorb and convert all stellar Lc quanta. In the given case, therefore, the num
ber of Lc quanta emitted by a star will be equal to the number of Balmer quanta 
emitted by the nebula. 

Thus, information about the star beyond the Lyman series limit can be de
termined from the nebular emission in the Balmer series. By comparing the 
nebular emission in the Balmer series with the stellar emission in the visible 
portionof the spectrum, we are, in essence, comparing the stellar emission in 
two widely separated spectral regions (ultraviolet and visible). Therefore the 
stellar temperature can be determined from this comparison. 

Let us denote the average intensity of the radiation, coming from the star, 
by Iv*. Then the number of quanta, emitted by the s ta r  in the frequency inter
val from v to v + dv, will be equal to 
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and this means that the total number of Lc quanta emitted by the star will be de
termined by the formula 

d vN L ~ *=4nr.f s-&,hv (22.18) 
Ve 

where v0 is the frequency of the Lyman series limit. 

On the other hand, the number of Balmer quanta, emitted by the nebula, is 
equal to 

(22.19) 

where E.
1 

is the total energy emitted by the nebula in the i-th Balmer line, and /292 

hv.
1 

is the corresponding photon energy. Let us denote by Ei* the energy emitted 

by the star in unit frequency interval near the i-th Balmer line, and let us  formu
late the dimensionless ratio 

(22.20) 

which can be determined from observations. Substituting (22.20) into (22.19) and 
considering that 

E,' b . W v r * ,  (22.21) 

we obtain 

(22.22) 

In the case when the optical thickness of the negula beyond the Lyman ser
ies limit appreciably exceeds unity, 

NB. =NL:. (22.23) 

Therefore, with the aid of Eqs. (22.18) and (22.22) we have 

(22.24) 
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We will assume that the radiation intensity Iv* is given by Planck's formula 

with temperature T,. Then instead of (22.24) we obtain 

(22.25) 

After making the substitution 

(22.26) 

we finally obtain 

- t tdtS,.,= 	 (22.27)
4 

The summation on the right side of this formula extends over all lines of the Bal- /293
mer  series and over the Balmer continuum. 

As  already stated, the quantities Ai must be found from observations. Then 

the stellar temperature T, can be determined from Eq. (22.27). 

The method that has been discussed for determining the temperature of 
stars was proposed by Zanstra 161. He also applied this method to a determina
tion of the temperatures of three planetary nebulae nuclei (NGC 6543, 6572, 7009). 
It was found that the temperatures of these stars are very high (39,000, 40,000 
and 55, 000" respectively). 

In the derivation of Eq. (22.27) it was assumed that all stellar energy in 
the Lyman continuum is absorbed by the nebula. If this is not so, then instead 
of Eq. (22.27) we obviously have 

(22.28) 

where 7
0 

is the optical thickness of the nebula immediately beyond the Lyman 

series limit. Here  i t  is taken into consideration that the absorption coefficient 
of hydrogen is inversely proportional to the frequency cubed. When T,, = 03 , 
Eq. (22.28) passes over to Eq. (22.27). If 70 << 1for a given nebula and we 
still use Eq. (22.27) to determine the stellar temperature, then, as is easily 
seen, a temperature lower than the true value is obtained. 

The determination of the stellar temperature from Eq. (22.28) requires a 
preliminary determination of the nebular optical thickness T ~ ,which is a fairly 
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difficult problem. Equation (22.28) is sometimes used to determine the quantity 
7

0 
after a stellar temperature value found by some other method has been assumed. 

5. Stellar radiation in the ultraviolet region of the spectrum. The emis
sion of gaseous nebulae in  the lines of many atoms (but, as we will see below, 
not all) occurs in the same fashion as the hydrogen line emission resulting from 
photoionization and subsequent recombinations. These atoms absorb stellar en
ergy beyond the limits of their principal ser ies  and radiate it partially in the vis
ible portion of the spectrum. Thus, in particular, nebulae emit in the lines of 
hydrogen, helium and ionized helium. We recall that the ionization energies of H, 
He I and He II are equal to 13.6,  24 .6  and 54.4 eV, respectively, whereas the en- /294 
ergy of visible quanta is about 273 eV. Consequently, the nebular emission in the 
lines of these atoms occurs because of stellar energy in the far ultraviolet region 
of the spectrum. 

From the intensities of the various atomic lines appearing as the result of 
photoionizations and recombinations, one can determine the s tar  temperature in 
the same manner as from the hydrogen line intensities. We will assume that the 
nebula absorbs all stellar photons beyond the principal series limit of the given 
atom. Then the number of these photons (just as in the case of the hydrogen atom) 
will be equal to the number of photons emitted by the nebula in the second series. 
Therefore, for determining the stellar temperature we obtain the following equa
tion, which is an extension of Eq. (22.27): 

(22.29) 

Here x0 = hvo/kT,, and Y 0 is the ionization frequency of the ground state of the 

atom of interest. The summation on the right side of Eq. (22.29) is taken over 
the lines of this atom in the visible por
tion of the spectrum, and the fact0r.Q 
is the ratio of the number of photons in 
the second series to the number of pho
tons in the lines observed. For hydro
gen Q = 1, if all the Balmer series lines 
are observed. For other atoms the 
quantity Q can be evaluated on the basis 
of theoretical determinations of emission 

- line intensities (see Section 24). It should 
Visible1 a#iJ v,[Hef) dHcOl be noted that a precise knowledge of the
P a d  quantity Q is not required since a large 

Figure 30. change in the integral on the left side of 
Eq. (22.29) corresponds to a sm.all 
cknge  in temperature. 

Stellar temperature determination from the lines of different atoms leads, /295
generally speaking, to different results. For example, for the nucleus of the 
NGC 7009 nebula a temperature of 55,000" is obtained from the hydrogen lines 
and 70,000"from the ionized helium lines. In some cases the temperature discrep
ancy is even greater. 
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To explain such results we must assume that the stellar radiation intensity 
cannot be represented by Planck's formula with the same temperature in all spec
tral regions. Moreover, the difference in the temperatures determined from the 
lines of different atoms can be caused by the incomplete absorption by the nebula 
of stellar radiation beyond the limits of the principal series of some atoms. In 
the last case, as explained above, Eq. (22.29) gives reduced temperature values. 

In the practical application of the method that has been discussed to stellar 
temperature determination, considerable difficulty arises in finding the quantities 
Ai from a comparison of the nebular and stellar spectra. Therefore the possibility 

of determining T, from the ratio of the line intensities of any two atoms in the neb
ular spectrum is of considerable interest. It is obvious that in this case the quan
tity T,, in essence, is found from a comparison between the stellar spectral re
gions beyond the limits of the principal series of these atoms. 

This possibility was first employed by V. A. Ambartsumyan, who suggested 
determining the stellar emperature from the ratio of the intensities of the hydro
gen HP lines and A 4686 A of ionized helium in the nebular spectrum. To relate 

this ratio with the quantity T,, we can make use of Eq. (22.29), by writing i t  f irst  
for hydrogen and then for ionized helium. In the first  case we restrict  ourselves 
to the HP lines on the right side of Eq. (22.29), and in the second-to the A 4686 A 
line. The corresponding values of Q in both of these cases will be similar since 
the H and Hef atoms are similar, and the Einstein probability coefficients for the 
4 -2 and 4 -3 transitions (by means of which the lines of interest are produced) 
are almost identical. Therefore, after dividing one of these equations by the other, 
we obtain (with an accuracy to within a coefficient near unity) 

-
ELcsss (22.30) 

where x0 is the quantity defined by Eq. (22.26) for hydrogen. 

The stellar temperatures determined with the aid of Eq. (22.30) are very /296-
high. For example, a temperature of 115,000" was obtained for the nucleus of 
the NGC 7009 nebula. Such high temperature values a re  apparently explained 
primarily by the incomplete absorption by the nebula of stellar radiation beyond 
the Lyman series limit. Such an explanation seems probable because the hydro
gen should be highly ionized in nebulae in whichthe helium is doubly ionized. As 
a result, the optical thickness of the nebula beyond the Lyman series limit can 
be less than unity. 

The lines of other atoms (N 111, C IVYetc. ), besides those of hydrogen, 
helium and ionized helium, can be used to determine stellar temperatures from 
the emission lines in nebular spectra. Instead of temperatures, the number of 
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photons, emitted by the star beyond the limits of the principal atomic series, can 
also be determined simply. In this case the possibility of incomplete absorption 
of such photons by the nebula must be taken into consideration for atoms with low 
ionization potentials (H, He). Photons beyond the principal series limits of atoms 
with high ionization potentials are usually completely absorbed by the nebula. Thus, 
we can find the energy distribution in the far ultraviolet region of the stellar spec
trum from the intensities of the emission lines of different atoms in the visible 
spectrum. 

6.  Determination-ofstellar tempeZaJhres of.''nebular!l lines. As already 
mentioned, the gaseous nebula emission mechanism (photoionizat'ions with subse
quent recombinations) considered above is not the only one. Another mechanism, 
causing emission in the principal lines N1and Nz, as well as in other "nebular" 
lines, is also present in nebulae. 

The fact that nebular emission in the N1 and N2 lines occurs not as a result 

of photoionizations is corroborated by the following considerations: 

1. If the photons in the N 1and N2 lines were to arise because of stellar ra
diation beyond the principal series limit of doubly ionized oxygen, the stellar tem
peratures would be extremely high, more than a million degrees in some cases. 

2. There are a number of planetary nebulae in whose spectra there a re  no 
ionized helium lines, which is explained by the weakness of the radiation of the 
nucleus beyond the principal series limit of this ion. If the Nl and Nz lines were 
to arise because of photoionizations, then in the case given they also would be ab
sent since the ionization potentials of He+ and Of+ are nearly identical. However, 
the N1and N2 lines a re  the most intense in the spectra of all planetary nebulae. 

In actuality the emission of gaseous nebulae in %ebularTTlines is caused 
by the excitation of atoms through collisions with free electrons. The excitation 
potentials of states, in transitions from which photons a re  emitted in the lines 
being discussed, are very low (for example, 2 .5  V for the N 1 and N2 lines). 

Therefore there is a large number of free electrons in the nebulae whose ener
gies are sufficient to excite these states. In the final analysis, of course, the 
emission of nebulae in the %ebular" lines occurs because of the stellar radia
tion since the free electrons acquire their energy through photoionizations. 

The stellar temperatures can be determined from the emission of nebulae 
in the %ebular" lines, just as they can be determined from the emission in lines 
having a recombination origin. Appropriate formulas have been derived in the 
previously cited work of Zanstra [61. In this the following assumptions were 
made: 1)most of the free electrons arise through photoionization of hydrogen 
atoms, 2)  all the Le photons of the s tar  are absorbed by the nebula, 3) all the 
energy received by the electrons during ionization enters into the excitation of 
the "nebular" lines. 
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As is known, when an atom is ionized by radiation of frequency v, the kine
tic energy of the freed electron is equal to 

where u0 is the ionization frequency of the atom (hydrogen in the case given). If 

the nebula absorbs all stellar radiation beyond the Lyman series limit, then the 
energy acquired by the free electrons in 1second will be equal to 

On the other hand, the energy emitted by the nebula in the "nebulart1lines 
in 1second can be represented in the form 

where A.
1 

a re  the quantities defined by Eq. (22.20), and the summation is taken 

over all llnebularlllines excited by electron impact. 

Under the assumptions made, the last  two quantities must be equal to each /298 
other, i.e. , 

(22.31) 

Replacing the quantity I * here by the Planckian intensity, we obtain 
V 


(22.32) 

or, using the notations of (22.26) 

(22.33) 

Equation (22.33) provides the possibility of determining the stellar temperature 
T,, if the quantities A. for the "nebular" lines are known from observations. 

1 


After applying this method to the determination of the temperatures of the 
nuclei of planetary nebulae, Zanstra obtained a temperature of 39,000"for NGC 
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6543, 38,000" for NGC 6552 and 50,000" for NGC 7009. We see that these tem
perature values are very close to the T, values, found from the hydrogen lines, 
presented above. 

For a crude estimate of stellar temperatures Zanstra used the method dis
cussed in a simplified form. Using Eq. (22.33) and the fact that the N1 and Nz 

lines determine the major portion of the visible luminosity of a nebula, he deriv
ed the relationship between the stellar temperature T, and the difference of the 
stellar magnitudes of the nucleus and nebula m* - mn. It is obvious that the great
er this difference, the higher the stellar temperature. The temperatures of a 
large number of nebular nuclei were determined from observed values of the dif
ference m* - mn' It was found that in some cases these temperatures reach 

100,000". The high stellar temperatures, obtained by this method, are confirmed, 
as a rule, by other signs, in particular the high intensity of the He 11lines in neb
ular spectra. 

The methods presented in this section for determining stellar temperatures 
are widely used in astrophysics. With the aid of these methods not only are the 
temperatures of nebular nuclei determined, but also the temperatures of s tars  
with bright lines in their spectra: Be and Wolf-Rayet class stars, novae, etc. 

23. Ionization of Atoms 

1. Number of recgmbinations. A s  explained, atomic ionization due to the /299
effect of the radiation of hot stars occurs in gaseous nebulae. At the same time, 
reverse processes also occur in the nebulae-capture of free electrons by ions, 
i. e. , atom recombinations. The number of ionizations can be determined with 
the aid of the continuous spectrum absorption coefficient introduced in Section 5. 
We will now derive formulas for determining the number of recombinations. 

3Let n+ and ne be the number of ions and the number of free electrons in 1cm , 
respectively, and f(v)dv is the fraction of the electrons with velocities from v to 
v +- dv. Let us denote by pi(v) the effective capture cross section of an electron 
with velocity v in  the i-th level, Then the number of captures of electrons with 

3velocities from v to v + dv, occurring in 1cm in 1sec, will be equal to 

n+n$i(U)f(o)vdv. 


Let us represent the total number of recombinations in 1cm3 in 1 sec in the.i-th 
level in the form nen+Ci(Te), where Te is the electron gas temperature. It is 
obvious that 

(23.1) 

The quantity Pi(.) is related to the continuous spectrum absorption coef

ficient of atoms in the i-th state. To establish this relationship let us examine 
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the state of thermodynamic equilibrium. In this case detailed balance occurs, 
whereby any process is counterbalanced by an opposite process. In particular,
the number of ionizations, occurring from the i-th level upon absorption of pho
tons with frequencies from v to v + dv, must be equal to the number of captures 
at this level of electrons with velocities from v to v -+ dv, where 

4 
hv=-”v t+M.  (23.2)-3 

The number of ionizations from the i-th level, upon absorption of photons 
3with frequencies from v to v + dv, in 1cm in 1sec is equal to 

where ni is the number of atoms in the i-th state, kiv is the absorption coefficient /30C 

calculated for one atom (the expression within the parentheses takes negative ab
sorption into account), p 

V 
is the density of radiation of frequency v. On the basis 

of the detailed balance principle we have 

(23 .3 )  

As is known, in the presence of thermodynamic equilibrium the function 
f(v) is determined by Maxwell’s formula, the radiation density p 

V
-by Plancks’ 

formula, and the atomic state distribution-by the Boltzmann and Saha formulas. 
From Eq. (23.3),  with the aid of the formulas that have been enumerated, we 
obtain 

(23 .4)  

where gi is the statistical weight of the i-th state of a given atom, and g+ is the 
statistical weight of the ground state of the ion. 

Equation (23 .4)  also gives the desired relationship between the quantities 
Pi(v) and kiv. Although thermodynamic equilibrium was assumed in its deriva
tion, it is not always correct (since the quantum absorption and emission prob
abilities a r e  independent of the atomic state and quantum frequency distributions). 

Substituting (23.4) into (23. l), we obtain the following expression for the 
recombination coefficient: 

(23 .5)  
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Here  the function f(v) is given by Maxwell's formula for the temperature Te, i.e., 

(23 .6)  

To compute the quantity C.(T ) from Eq. (23 .5) ,  the absorption coefficienti e  
for the given atom must be known. Let us now find Ci(Te) for  hydrogen, In this /301 

case the absorption coefficient k. is given by Eq. (5 .6 ) .  Substituting ( 5 . 6 )  into
11, 

(23 .5 )  and also using Eqs. (23 .2)  and (23 .6) ,  we obtain 

(23 .7)  

where Eix is the integral exponential function. 

Equation (23 .7)  can be rewritten in the form 

Ci(T,)  = 3.22 * 10" (Te), (23 .8)  

where 

(23 .9 )  

8Values of the function Mi(T) x 10 , taken from Cillid's paper 171, are  listed 
in Table 27. 

8TABLE 27. VALUES O F  THE FUNCTION M.(T x 10 
1 


- .-__I I T - B I - T I 
i 

-.. --. 

8,8 6.0 3,9 2.3 5 3.5 i , l  0,64 0,34 0.13 
3.9 2,7 1,6 6 2.9 0.86 0.46. 0,23 0,088 

6.4 2.5 1,4 0,83 :$1 7 2.3 0,66 0.35 0,17 0,022
4.7 1.6 0.94 0.52 0.21 8 1,9 0.52 0,23 0,13 O,M6 

-____ --__-__ -. 

Commas represent decimal points. 

The recombination coefficients for other atoms can be found in an analog
ous fashion. 
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2 .  Degree of ionization in a nebula. In the presence of thermodynamic 
equilibrium the degree of atomic ionization is determined by Saha's formula. 
There is no thermodynamic equilibrium in nebulae; therefore we must derive a 
new ionization formula. To do this, we make use of the fact that nebulae are sta
tionary, i. e., the physical conditions in them do not change with time (a change
does occur in reality, but very slowly). More precisely, we will assume that in 
any volume the number of ionizations is equal to the number of recombinations. 

Since atom ionization in  nebulae occurs predominantly from the ground state, 
3the number of ionizations completed in 1 cm in 1 sec due to the effect of radiation 

of frequency in the frequency .interval from I, to v + dv is equal to /302 

The radiation density p,  in a nebula is determined by Eq. (22.2) .  Therefore, for 

the total number of ionizations occurring in a unit volume per unit time we obtain 

where v1is the frequency of ground state ionization. 

Recombinations, on the other hand, occur a t  all levels. Therefore the total 
3number of recombinations occurring in 1 cm per 1 sec will be equal to 

Equating the last  two expressions, we have 

(23. 10) 

This formula also provides the possibility of determining the degree of atom ion
ization in a nebula if the quantities klv and C.(T ) are known. It can be simplii e  
fied considerably, however, by making use of the relation (23.5) .  

First, let us rewrite Eq. (23. 10)  in the form 

(23.11)  
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where the fraction of the captures in the f i rs t  level is denoted by p. Taking Eq. 
(23.5) into consideration, as well as assuming that the quantity p * is given byV 
Planck's formula with temperature T,, and the quantity f(v)-by Maxwell's for
mula with temperature Te, instead of (23.11) we obtain 

To order to evaluate the integrals entering into Eq. (23.12), the frequency /303 
dependence of klv must be known. This dependence is different for different 

atoms; however, let us assume that k l v  - l / v  2 for all atoms. The e r ro r  result
ing from this is relatively small, and the calculations are greatly simplified. Af
ter integration, Eq. (23.12) assumes the form 

(23.13) 

In normally encountered practical cases hvl/kT, >> 1. Therefore instead 
of (23.13) we have 

(23.14) 

This is the final form of the formula for ionization in nebulae. 

We see that Eq. (23.14) differs from the Saha formula by the presence of 
the factor p W d v  on the right side. This factor is very small for gaseous 

nebulae. This does not mean, however, that the degree of ionization n+/n 1is 

also small. In fact, the degree of ionization can be extremely high in nebulae 
since the dilution factor W is compensated by the smallness of the free electron 
density ne. 

In planetary nebulae, as we know, W 2 and it will be shown below 

that ne 104 cm -3 . In this case Eq. (23.14) shows that for hydrogen the degree 

of ionization will be greater than unity when T, > 20,000". In the same situation 
for helium n+/nl > 1when T, > 33,000". 

3. Ionization in nebulae of large optical thickness. Equation (23.14) is 
valid only when the optical thickness of the nebula beyond the principal series 
limit of a given atom is less than unity. In the opposite case stellar radiation 
absorption must be taken into account, as well as the presence of diffuse nebu
lar radiation occurring from recombinations in the f i rs t  level. 
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The absorption of stellar radiation along the path to a given point of the neb

ula can be taken into account by introducing a factor e-' in the right side of Eq. 

(23.14), where 7 is the optical distance from the star beyond the principal series 

limit, corresponding to some average absorption coefficient. Ionizations due to 

the diffuse nebular radiation can be taken into account approximately by discard- /304

ing, on the right side of Eq. (23. lo), the terms corresponding to recombinations 

at the first level (since in nebulae of large optical thickness recombinations at the 

first level are compensated by ionizations due to the absorption of .the diffuse ra

diation). It is easy to see that in this case the factor p/(l-p) must be introduced 

on the right side of Eq. (23.14) in place of the factor p. For the hydrogen atom 

the fraction of captures in the first level is about one-half so that the factor p/ 

/(l-p) is near unity. We will assume that this factor is approximately equal to 

unity for other atoms also. Taking into consideration all that has been said, Eq. 

(23.14) can be rewritten in the following form: 


(23.15) 

Of interest is the question: how does the degree of ionization nc/nl change 

with a change in the distance r from the star ? To simplify the consideration of 
this question, let us take a planetary nebula whose thickness is small compared 
with its radius. In this case the dilution factor in the nebula can be considered 
to be constant (W = const). Moreover, let us  assume that the atom density in the 
nebula is also constant (n = const). 

Our analysis will pertain to hydrogen. In principle, however, the results 
will be valid for all atoms which produce strong absorption beyond the limits of 
their principal series in nebulae. 

Let us denote the fraction of ionized atoms by x, i. e. , let us set 

n+ - zn, nl = (1 -z)n, n. ='zn. (23.16) 

Then instead of Eq. (23.15) we obtain 

(23.17) 

The optical thickness T entering into this formula is equal to 

f 

. r = n k $  ( i - -Z)&,  (23.18) 
rl 

where k is the average absorption coefficient and r
1is the radius of the inner 

boundary of the nebula. 
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From Eqs. (23.17) and (23.18) it is easy to derive a differential equation /305
relating the quantities x and r. Taking the logarithm and then differentiating Eq. 
(23.17), we find 

(:+2 -) i 
ak =-d-r. (23.19) 

From this, with the aid of (23.18), we have 

(23.20) 

Integrating Eq. (23.20) yields 

i2 0  1-2 +----I 
1-2 

-nk(r -r , ) ,  (23.21)2h--
1-20 2 1 - 2 0  

where x0 is the value of x when T = 0. 

Values of the quantity nk(r - r1), calculated from Eq. (23.21) for  different 
x values, are listed in Table 28 as an example. Here  it is assumed that 1- x

0 
= 

= 0.001. The values of T, found from the formula 

TABLE 28. FRACTION 
IONIZED ATOMS x AS (23.22) 

A FUNCTION O F  
~ A N D T  

resulting from (23.17) are the same. 

0,970 

From the formula presented and from the table 
it is seen that the quantity x remains near unity up to 

0,999 
0.997 

0 
669 

the value of r defined by the formula 

0,990 907 

0.900 (23.23) 
0,700 
0,500 1012 

after which i t  decreases rapidly for  a relatively
Commas represent small  change in r. The values of r given by Eq.

decimal points. (23.23) correspond to T values of a few units. 

The result  obtained is completely understandable from physical considera
tions. When the optical distance T becomes of the order of unity, a decrease oc
curs  in the degree of ionization, i.e. the number of neutral atoms increases. 
The increase in the number of neutral atoms leads, in turn, to an increase in the 
optical distance. 

Thus, a nebula can be divided into two regions: an inner region in which /306
which the degree of ionization is high (n+/nl >> l), and an outer region in which 
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the degree of ionization is low (n+/n 1 << I), with a very sharp boundary between 
them. The first region emits in  the lines .of a given atom which appear as a re
sult  of photoionizations and recombinations; the second does not emit in  these 
lines. For the hydrogen atom case, the first of these regions is usually called 
the H I1 zone, the second-the H I zone (Fig. 31). 

If the temperature of the star is sufficiently high to produce a second ioni
zation of a given atom, then the nebula can be divided into three regions. Prim

arily doubly ionized atoms exist in the f i r s t  region 
nearest  the star and the emission occurs in the lines 
of the singly ionized atom. Primarily singly ionized 
atoms exist in the next region and it emits in the lines 
of the neutral atom. Only neutral atoms are present
in  the last region and it does not emit at all in the 
lines of the given atom that have a recombination 

n'sf?, origin. 

n+<<n, What we have said means that radiation "strat@ 
ification" (i.e. , layering) must exist in nebulae. 

Figure 31. 	 This theoretical conclusion is confirmed by observa
tions: the images of planetary nebulae, obtained with 
the aid of a slitless spectrograph, have a nonuniform 

magnitude a t  the different lines. Just  as one should expect, the dimensions of the 
imate are smaller,  the higher the atomic ionization potential. Fo r  example, the 
image dimensions of nebulae are considerably smaller in the ionized helium lines 
than in the neutral helium lines. 

4. Energy balance of free electrons. In the derivation of the ionization for
mula we assumed that the number of free electrons in each elementary volume of 
the nebula does not change with time. Now we will consider once again the import
ant stationarity equation, expressing the energy conservation law of free electrons. 
This permits one to derive the relationship between the stellar temperature and the 
electron temperature of the nebula I8 1. 

We will assume that the free electrons arise from photoionization of hydro
gen atoms. Let us denote by E the average energy acquired by an electron during 
photoionization. Since the number of ionizations must be equal to the number of 

3recombinations, then the amount of energy acquired by the electrons in 1cm in /307
03

I second will be equal to .Z,
1 

The free electrons expend their energy by different means. Some portions
of their energy is expended in continuous spectrum radiation during recombina
tions and free-free transitions. Let us denote this portion of the energy by 
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where E .  is the average energy of a free electron, bound in the i-th level. An
1 

other portion of the energy of the free electrons, which we will denote by E, is 
expended in the excitation of radiation in the f%ebulartflines (in the foregoing 
section it was assumed, as an approximation, that all the energy acquired by 
free electrons through photoionizations goes into this). Finally, the free elec
trons can expend their energy in the excitation of hydrogen atoms. Although the 
energy required for the excitation of a hydrogen atom is not large, there a re  
many of these atoms so that the energy loss of free electrons through collisions 
with them must be taken into consideration. Let us denote by nlneDi the number 

of excitations of the i-th hydrogen level and by nlneDc-the number of hydrogen
3atom ionizations occurring in 1cm in 1second because of collisions with free 

electrons. Then the energy lost by the free electrons through these collisions 
will be equal to 

On the basis of the law of energy conservation we have 

(23.24) 

For simplicity we will assume that the temperature is the same through
out the nebula. Then, integrating Eq. (23.24) over the entire volume of the neb- /308-
ula, we obtain 

(23.25) 

where 6 is the energy, acquired by an electron during photoionization, averaged 
for the entire nebula. 

The energy, emitted by the nebula in ffnebularf'lines, can be expressed in 
terms of the energy emitted by the nebula in any Balmer line, for example, in 
the HP line. Doing this, we have 

(23.26) 
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where heb/IHpis the ratio of the intensities of the %ebular" and HP lines in the 
spectrum of the nebula. But the quantity %, representing the number of hydro
gen atoms in the k-th state in 1cm3, must be proportional to nen+ since filling 
of the hydrogen atom levels occurs as a result of recombinations. Therefore, 
introducing the notation % = zkn n+ (see following section concerning the definie 
tion of the numbers zk), instead of (23.26) we obtain 

Ak2hv25zb$ n&+ dV. (23.27) 

Substituting (23.27) into (23.25), we obtain 

where 

(23.29) 

Equation (23.28) can be discussed for two limiting cases. In the first case 
let us  assume that the optical thickness of the nebula in the Lyman continuum is 
small ( T ~<< 1). Then the ionization of hydrogen atoms will occur primarily due 
to the effect of radiation coming directly from the star, and the quantity E will 
be equal to 

(23.30) 

For hydrogen, as is known, klv - l /v3 .  Therefore, representing the quantity
E in the form 

-
e =AkT., (23.31) 
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where k is the Boltzmann constant, for  the quantity A we obtain 

A =  -a, 
(23.32)& 

Gj i=Tj 4 

where x0 = hvl/kT,. 

In the second case, let us  assume that the optical thickness of the nebula 
beyond the Lyman series is large (?-o >> 1). In this case ionizationiscaused both 
by radiation coming directly from the star and by the diffuse radiation of the neb
ula itself. For  large values of T0' however, one can assume that all the quanta 
emitted during electron captures in the f i r s t  level are absorbed in the nebula, 
i. e., the number of ionizations occurring due to the effect of the diffuse radiation 
is equal to C .fn n+dV, and the energy which the electrons acquire is equal tol e  
C E .fn n'dV. Therefore the diffuse radiation of the nebula can be ignored in the1 1  e 
case given. The quantities C. and Cf i  in Eq. (23.28) need only be summed from 

1 

2,  and not from 1. For  the quantity A we now obtain 

(23.33) 

The values of the quantity A, calculated from Eqs. (23.32) and (23.33),  are /310
listed in Table 29. 

From this table i t  is seen that in the assumed interval of stellar tempera
tures of energy E in the second case is approximately twice as large as in the 
first. And since the number of captures in the first level amounts to about one-
half of the total number of captures, Eq. (23.28) should give similar results in 
both cases. 

Considering the second of the casBs examined (although it is certainly not 
always schieved in reality), in addition to the equality (23.31) we set  

(23.34) 
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TABLE 29.  VALUES OF THE QUAN
TITY A (23.35)  

0 ..
2Dihvii +D,hvi, =Bk 2Cr. (23. 36) 

20 0.90 18 1,= 25 
2 t 

40 0.83 33 I ,46 58 Then instead of Eq. (23 .28)  we obtain60 46 I .63 98 
80 57 1,76 141 

Commas represent decimal points. AT.  =BT, +C	-INeb -I-D +- (23 .37)  
In fJ 

Equation (23.37)  is what we are looking for. It interrelates the stellar 
temperature T, and the electron temperature Te of the nebula. The coefficient 

A entering into this relation depends only on T, and is given in Table 29. The 
coefficients B, C and D depend only on Te and are listed in Table 30. 

The electron temperature Te of the nebula caii be found with the aid of Eq. 

(23 .37)  if the stellar temperature T, is known. To do this the quantities INeb/ 

/IHp and n1/n+ must also be known 

TABLE 30. COEFFICIENTS B, C from observations. Since the N, and 
J.AND D N2 lines are the brightest in nebular 

~- .  
spectra, we have the approximation 

-

T,flWI I B B'I'dItW I C/IO% DH000 I 
'Neb''Hp IN1 + N2/'Hp - 4 1  N2/ I  HB .. 

I 

5 4,02 5 3 0.001 Using Eq. (23 .29)  and (23 .15) ,  we can 
7.5 1,04 8 3 3.0 represent the quantity n1/n+ in the form 

10 1,06 ii  3 2,S.lCJ'
12,s 1,08 14 3 2.5.4P 
15 1.10 

-
~~ 

Commas represent decimal points. n+ \n+JoL-\ I 

1 0  is the degree of ionization, defined by the ionization formulawhere (n+/n ) 

(i.e., Eq. (23.15)  for T = 0). It should be noted that the quantity nl/n+ need 

only be known approximately since the coefficient D changes very rapidly with a 
change in the electron temperature. 

The results of using Eq. i(23.37) to determine the electron temperatures of a 
a number of planetary nebulae are listed in Table 31. The nebula number is giv
en in the f i r s t  column, the value of T in the second, in the next three columnse 
the free electron energy fractions expended, respectively, in continuous spectrum 
radiation, in "nebular" line excitation and in inelastic collisions with hydrogen 
atoms. 
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TABLE 31. ELECTRON TEMPERATURES OF NEBULAE 
AND THE TEMPERATURES OF THEIR NUCLEI 

4 

c~%?- Tp- T,from 
T,'H!:J-

No. 'e S ~ C -
lines revisedtrum 

NGC 1672 14000" 0.10 0.30 0.60 59000 76000
NCC 7009 iOO00 0.15 0.55 0,30 40000 45000 
XCC 6572 i3WO 0.15 0.40 0.45 40000 48000 
XCC 6826 9000 0.25 0.60 0,15 27000 29000
IC11 3593 10300 0,30 0.60 0.10 24000 25000I XGC6SU il000 0,20 0.30 0,50 33000 41000 

The assumed values of the temperatures of nebular nuclei, from the "neb
ular" lines, i. e. , from Eq. (22.33), are presented in the next to last column of 
Table 31. A s  we recall, in writing down this equation i t  was assumed that all the 
energy acquired by free electrons in  photoionizations goes to excite the "nebular" 
lines. In reality, only a fraction of the energy, equal to CINeb/AT,IHp, goes for 

this purpose. Therefore we can refine the method of determining stellar temper- /312

atures from the I'nebular" lines by inserting this fraction as a coefficient in the 

left side of Eq. (22.33). The nuclei temperatures, found after this refinement, 

a re  presented in the last column of Table 31. It is easy to see that the refined 

method of determining stellar temperatures from the %ebularI' lines becomes 

equivalent to the method of determining stellar temperatures from the hydrogen 

lines. 


As seen from Table 31, the electron temperatures of the planetary nebulae 
are much lower than the temperatures of their nuclei. This is explained by the 
fact that a considerable portion of the energy acquired by the free electrons 
through photoionizations is expended by them in inelastic collisions with various 
atoms. Collisions with atoms having low excitation potentials (especially with 
O f t  ions) play the major role in the cooling of the electron gas. 

The Te values determined by us represent the average electron tempera
tures in the H I1 zones. The Te values can, however, differ significantly from 
one portion of the nebula to another. This is caused both by differences in the 
values of the quantity E and in the concentrations of these atoms and ions, through 
collisions with which cooling of the electron gas occurs. As calculations show, 
the electron temperatures in the H I zone are much lower than in the H II zone. 

Other methods of determining the electron$temperaturesof nebulae (from 
the ratio of the intensities of forbidden lines) will be discussed in Section 25. 
The Te values, found by these methods, turn out to be approximately the same 
as the values presented in Table 31. If the electron temperature of the nebula 
is assumed to be known, then the stellar temperature can be determined from 
Eq. (23.37). It should be emphasized that this temperature will be characterized /313 
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by the stellar energy in the Lyman continuum itself, and not by i ts  ratio to the 
energy in the visible portion of the spectrum, like the temperature found by Zan
stra's method. 

As we will see below (in Chapter VII), a consideration of the energy balance 
of the free  electrons is also used in the study of the interstellar gas (primarily 
for the determination of the electron temperatures). 

24. Excitation of Atoms 

1. Excitation through photoionizations and recombinations. The excitation 
of atoms in nebulae occurs either through photoionizations and subsequent recom
binations or through collisions, Let us now consider the first of these mechanisms, 
applying it, for simplicity, to the hydrogen atom. The role of collisions in the 
excitation of atoms will be considered later. 

A calculation of the degree of atom excitation in nebulae is not too difficult. 
Under nebular conditions the probabilities of transitions from excited states due 
to the effect of radiation and collisions a re  much less than the probabilities of 
spontaneous transitions (with the exception of transitions from very high levels).
Therefore after the photoionization and recombination of the atom, only "cascade" 
transitions from level to level occur (i.e. , a chain of spontaneous transitions 
from the excited state to the first). The photons in the subordinate series lines, 
formed through these transitions, leave the nebula unhindered. As a result, the 
intensities of the emission lines a re  easily computed after a determination of the 
level populations. 

To determine the number of atoms in the different states we must formulate 
the steady-state equations expressing the fact that the number of transitions into 
a given state is equal to the number of transitions from this state. 

The number of transitions into the i-th state, occurring in 1 cm3 in 1 sec, 
is equal to 

Here  the first term represents the number of captures directly into the i-th level, 
the second-the number of spontaneous transitions from the upper-lying discrete 
states, the third-the number of transitions from the first state due to the effect 
of Lyman line radiation. 

Practically only spontaneous transitions occur downward from the i-th /314 
state. The number of these transitions in 1 cm3 in 1 sec is equal to 

H 
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Equating the last two expressions, we obtain 

(5 =2, 3, 4,...). 
The quantity pli, representing the Lyman line radiation density, is not known to 

us  a priori. Let us  therefore consider two limiting cases of (24.1). 

In case A we will assume that the optical thickness of the nebula in the Ly
man lines is very small compared to 1. Then the radiation density pli will also 

be small. Therefore, neglecting the last term in each of Eqs. (24. l), we find 

(24.2) 

In case B (which is much closer to reality than the foregoing case for the 
negulae that have been observed) the optical thickness of the nebula in the Lyman 
lines is assumed to be very large. In this case nearly all the photons emitted 
through the transition i - 1are absorbed in  the reverse transition, i. e. , n A = 

i il 

1 lip li' Consequently, instead of the system of Eqs. (24.1) we have= n B  

(24.3) 

Thus, in both cases we have come to a system of linear algebraic equations 
in  terms of the numbers zi =ni/nen+. 

The system of Eqs. (24.3) was solved approximately for  hydrogen by Cillie' 
[7] who used the f i r s t  12 equations (i = 3, 4, ..., 14) are discarded the rest .  The /315
recombination coefficient Ci(Te) is found from Eq. (23.7). 

Later Menzel and Becker [9] considered the systems of Eqs. (24.2) and 
(24. 3), after takinga more exact expression for the recombination coefficient 
(with a Gaunt factor different from unity) and after taking higher levels into con
sideration. Values of the quantity bi, defined by the relation 

(24.4) 
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i. e. , showing by what factor the value of ni/nen+ in  nebulae differs from the val

ue of n./nen+ in the thermodynamic equilibrium condition with temperature Te,
1 


are presented in their tables. 

Seaton [lo] has recently derived more exact solutions of the systems of Eqs. 
(24.2) and (24.3). The desired quantity zi was represented in  the form 

(24 .5)  

where k0 = 1 in case A and k0 = 2 in case B, and the quantities Qki (depending only 

on the Einstein spontaneous transition coefficients and on the value of k0) com

prise the elements of the llcascadematrix". The quantity Qki obviously deter

mines the probability of an atom entering level i from level k by any means. The 

values of the quantity bie (x.'kTe'9 calculated by Seaton, listed in Table 32.1 

TABLE 32. VALUES O F  THE QUANTITY 
b. e ( Xj/ i rTe)  

1 

. .= 

2 0,193 0.345 - g 0,360 

3 0.213 0,332 0,668 i ,013 40 0,376

4 0,m 0,364 0.540 0,792 , i5 0,434 

5 0,253 0.394 0,519 0,739 20 0,472 0,550 0,635 0,772 

6 0,299 0,421 0,520 0,725 25 0,499 0.603 0,656 0,785 

7 0,333 0.443 0,529 0,722 30 0,520 0,62i 0,673 0,795 

8 0.341 0.463 0.S0 0.725 I I
. . 
Commas reprl ent ecimal points, 

We see that the quantity b. does not differ greatly from unity (and for  i - CO,
1 

as should be expected, bi -1). On this basis some notion can be gathered with 

respect to the atomic state distribution of the nebula near thermodynamic equi
librium. In reality this is true only with respect to the quantities ni/nen+ (for 
i 2 2 in case A and �or i 2 3 in case B). Lf, however, the degree of atomic exci
tation n./n 

1 
is considered, then this quantity is very far from its value in the

1 
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presence of thermodynamic equilibrium. In fact, from Eqs. (23.14) and (24.4) 
we obtain 

(24.6) 

Equation (24.6) differs considerably from Boltzmann's formula. The presence of /316-
the small factor W on the right s ide  of Eq. (24.6) 'is especially significant. Be
cause of this the number of excited atoms in the nebula is much less than the num
ber  of atoms in the ground state. 

It should be noted that the system of Eqs. (24.3) [just like (24.2)], determin
ing the populations of the hydrogen atom levels, is not completely exact. The 
azimuthal degeneracy of the levels, i. e., the presence of a number of states with 
different azimuthal numbers I in association with the principal quantum number i, 
was not taken into consideration in writing down this system. In reality instead 
of the system (24.3) we must write the following system of equations for determin
ing the numbers nil: 

(24.7) 

Here it is assumed that the only transitions allowed a re  those for which the num
ber  Z changes by one. The system of Eqs. (24.7) has been discussed in a number 
of papers. One of the results obtained is that the replacement of the system (24.3) /317-
by the system (24.7) does not lead to significant changes in the numbers of atoms 
n.
1 

(nor in the emission line intensities). 

Equations, determining the level populations, can be formulated not only 
for hydrogen but also for other atoms. However, for other atoms (except hydro
genlike ions) it is very difficult to find the quantities % and Ci(Te). Therefore 
the level populations in these cases were only computed approximately. Such cal
culations have been made in the papers of A. A. Nikitin [ l l ]  for several atoms 
(He I, N III, etc.). 

2. Intensities of emission lines. Knowing the atomic level populations 
makes i t  possible to calculate the emission line intensities. These calculations 
are greatly facilitated by the complete transparency of nebulae for  radiation in 
the subordinate series lines. The intensities of lines, appearing in nebular spec
tra as the result of recombinations, depend only on the recombination coefficients 
Ci(Te) and the spontaneous transition coefficients L. Therefore by comparing 
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theory with observations one can, in particular, check the correctness of the 
quantum mechanical calculations of these coefficients. Such a check (of special 
interest in the case of complex atoms) is possible only in the study of nebulae 
because of the extreme simplicity of the physical conditions existing in them. 

Let us now find the hydrogen emission line intensities. The amount of en
ergy, emitted by the nebula in the line corresponding to the transition k - i in 
1sec, is equal to 

where the integration is performed over the entire volume of the nebula. Let us 
represent the number of atoms % in the form = zk(T )n n+, where the quantie e  
ty z (T ) is determined from the system of Eqs. (24.2) or  (24.3).  If it is assumk e  
ed that the electron temperature does not vary in the nebula, then instead of Eq. 
(24.8) we have 

(24.9) 

The integral entering into the formula that has been derived is unknown, 
but it is common to all lines. Therefore Eq. (24.9) provides the possibility of 
calculating the relative emission line intensities. 

In particular, with the aid of Eq. (24.9) the relative intensities of the Bal
mer lines, i. e. , the so-called Balmer decrement, can be found. Expressing the 

line (as i t  is us- /318intensities of the Balmer lines in terms of the intensity of the H B .ually done), we obtain 

(24.10) 

The theore tical Balmer decrement (calculated by Seaton)is listed in Table 33. 

TABLE 33. BALMER DECREMENT We see that the theoretical Bal
mer  decrement in each of the cases 
considered is slightly dependent on the 
electron temperature and can practi
cally be considered constant. How
ever, the observed Balmer decrement

I varies markedly from nebula to nebu-
H, 1,91 1.99 2.71 2.79 2 , n  la, and is greater than theory predicts
HB 1.03 1.00 1,OO I.OD I,OD 

HZ 0,539 0.569 0,506 0,491 0.50 (for example, for many nebulae the 

Ha 0,378 0,356 0,298 0,282 0.26 ratio of the H 

a! 
and HP line intensities 


H, 0,253 0,235 0,192 0.178 0,18 is equal to approximately 5). As has 

-


~ ~ been established, the difference be-
Commas represent decimal points. tween theory and observations are 
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explained primarily by the selective absorption of light in space, leading to the 
reddening of distant objects. As a result, the observed ratio of the Ha!and H

P 
line intensities appears greater than i t  actually is. After taking account of light 
absorption, the theory (in case B) and observations agree satisfactorily. This is 
seen, for example, from Table 33, in the last column of which is listed the ob
served Balmer decrement with light absorption taken into account (averaged for 
17 nebulae). 

It is obvious that light absorption in the Galaxy can be determined by com
paring the theory and observed line intensities in nebular spectra. In such de
terminations i t  is expedient to use data for the Paschen as well as for the Balmer 
lines. 

Besides the relative intensities of hydrogen lines in nebular spectra, at  the 
present time the relative intensities of the lines of some other atoms (in partic
ular, He I and N III) have also been calculated approximately. 

3. Role of collisions. The free electrons, appearing through the photo-
ionization of atoms, have a fairly high kinetic energy. They can expend this en
ergy in the excitation of atoms through collisions. It is obvious that the lower 
the atomic excitation potential, the larger the fraction of free electrons that can 
excite this atom. Therefore atoms having low excitation potentials are excited 
primarily by electron collisions in nebulae. In particular, the excitation of the 
"nebular" line emission of nebulae occurs in this fashion. The electron colli
sions cannot, however, markedly affect the level populations of atoms with high 
excitation potentials. Let us now consider the question of hydrogen atom excita
tion by electron collisions (the excitation potentials of which must be considered 
to be appreciable, although not very high). The collisions leading to the "nebular" 
line emission of nebulae, will be examined in detail in the following section. 

As before, let nlneDi(Te) be the number of excitations and nlneDc(Te) be 
the number of ionizations from the ground state through collisions in 1cm3 in 
1see. The values of the quantities Di(Te) and Dc(Te) for hydrogen, calc-dated 
by Chamberlain 1121, a re  presented in Table 34. For i > 6 the quantity Di is ap
proximately determined by the formula 

(24.11) 

To determine the numbers of atoms in different states due to collisional 
excitation, we must formulate the steady-state equations, analogous to Eqs. 
(24.3). In the case given the number of collisions n n D must be written in-l e i  
stead of .the number of recombinations nen+Ci" Therefore instead of Eq. (24.3) 
we obtain 

/319-

/320 

(24.12) 
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By solving Eqs. (24.12) the quantities ni/nlne, and then the relative emis

sion line intensities, can be determined. Miyamoto, S. A. Kaplan and S .  I. Gop
asyuk, Chamberlain and others have discussed Eq. (24.12). The Balmer decre
ment calculated by Chamberlain is listed in Table 35. 

TABLE 34. VALUES OF THE TABLE 35. BALMER DECRE-QUANTITIES Di(Te) AND Dc(Te) MENT FOR COLLISION 
FORHYDROGEN EXCITATION 

~ 

loo050 


- ~ 

231* 10-U a9 - 10-12 23,2.10-10 a, 5.76
6.32 6.65 3,05 

Hi3 1,oo1.IO I ,a6 0.92 
0,435 0,69 0,404 4 0,291 0,347 0,383 
0,201 0,36 0.2i8 H, 0,dX 0,169 0.194 
25.7 5.31 6-25 H' 0,076 0,097 0,112 

-

Commas represent decimal Commas represent decimal 
points. points. 

From a comparison of Tables 33 and 35 i t  is seen that in the case of col
lisional atom excitation the Balmer decrement is greater than in the case of ex
citation by ionizations and recombinations. Because of this it has been suggested 
that the observed magnitude of the Balmer decrement in the spectra of planetary 
nebulae is caused not only by light absorption in the Galaxy but also by the effect 
of collisions on the population of the atomic levels. However, as it is easy to 
show, this effect cannot be large if the free electrons arise from photoionization 
of hydrogen atoms. In fact, one Balmer quantum is formed from each Lc photon 

of the star absorbed by the nebula, whereas by far not every free electron causes 
a collision leading to the appearance of such a photon. This is explained, first 
of all, by the fact that for a stellar temperature of the order of several ten thou
sand degrees the average energy of the freed electron amounts to only a small 
portion of the excitation energy of the hydrogen levels. Moreover, an appreci
able portion of the free electron energy goes into the excitation of the "nebularTT 
line emission of the nebula. Finally, as seen from Table 34, �or inelastic col
lisions of free electrons with hydrogen atoms the major portion of the energy is 
expended in the excitation of the L

CY 
line, and not in the excitation of the Ealmer 

lines. Thus, it must be recognized that the free electron energy is insufficient 
to produce by collisions the same Balmer line emission as is caused by recom
binations. 

4. Masses and densities of nebulae. The hydrogen atom concentration in 
the nebula can be-determined from the hydrogen line emission of the nebula. To 
do this, Eq. (24.9), determining the energy emitted by the nebula in a given line, 
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must be used. Applying this formula to the Balmer line, corresponding to the 
k -2 transition, we have 

Since hydrogen is the most abundant element and it exists predominantly in 
an ionized state in the luminous portion of the nebula, then one can assume that 
ne = n+. Therefore Eq. (24.13) can be rewritten in the form 

EM = zkAmhvun+2V, (24.14) 

where n+ is the average number of protons in 1 cm3, and V is the volume of the 
luminous portion of the nebula. From Eq. (24.14) we obtain 

(24.15) 

A calculation of the quantity n+ in planetary nebulae from Eq. (24.15) leads 
to values of the order of several thousand, With these values of n+ the ionization 

3formula gives n+/nl % 10 for the degree of hydrogen atom ionization. Conse
3quently there a re  several neutral hydrogen atoms in 1cm , on the average. 

Knowing the quantity n+ provides the possibility of determining the mass of 
the luminous portion of the nebula, which is equal to 

N - mHn+V, (24.16) 

where mH is the mass of a hydrogen atom. Substituting (24.15) into (24.16) we 
find /322 

(24.17) 

The energy emitted by the nebula in a given Balmer line amouts to some 
fraction b2k of the visual luminosity L of the nebula, i. e.,  Ek2 = 62kL. There
fore instead of Eqs. (24.15) and (24.17) we have 

(24.18) 

N = WrV, (24.19) 

where 

(24.20) 
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For most nebulae one can assume that the visual luminosities are determin
ed primarily by radiation in the N1 and N2 lines (nebulae with an intense continu
ous spectrum, which will be considered in Chapter VII, are an exception). Then, 
roughly speaking, the quantity bZk represents the ratio of the intensity of a given 
line to the intensity of the lines N1 1- N2. For example, in the case when the N2 
line is three times brighter than HP' the quantity 624 is equal to 1/12. In this 
case C = 1.5 .10  -12. Finally, the quantity bZ4 varies somewhat for  nebula to 
nebula; however, this has little effect on the value of C since 62k enters Eq. 
(24.20) under the square root sign. Therefore in a f i r s t  approximation the coef
ficient C can be assumed to be constant for all nebulae of interest. 

Equations (24.18) and (24.19) were first derived by V. A. Ambartsymyan 
[13]. Their application to the determination of planetary nebular masses and den
sities gave the following results: 

M w 0.01 Ma 
p IO-" .?/cats. 

These values of M and p are averages. The masses and densities of individual 
planetary nebulae can differ from these average values by a factor of ten. 

The densities of diffuse gaseous nebulae are, on the average, somewhat 
less than the densities of planetary nebulae (by about one to two orders  of mag- /323 
nitude). The masses of diffuse nebulae lie within a very broad interval-from a 
small fraction of a solar mass  to several thousand times the mass  of the Sun. 
For example, the mass  of the rfOmegarfnebula is about 500 M a .  

It should be emphasized that Eq. (24.19) gives the value of the mass of only 
that portion of the nebula which emits in the hydrogen lines. This value is the 
mass  of the entire nebula only in the case when the optical thickness of the nebula 
beyond the Lyman series limit is less than unity. 

To determine the densities and masses  of nebulae from Eqs. (24.18) and 
(24.19) the distances from them must be known. However, the distances from 
planetary nebulae are poorly known so  that their densities and masses  are deter
mined with some er rors .  Denoting the distance from the nebula by R, we see 
from the formulas cited that p -R-'/' and M -R5l2. Consequently an e r r o r  in 
the distance has a small effect on the density value, but a very large effect on the 
mass  value. 

It is interesting to note that the weak dependence of R on M made it possible
for  I. S. Shklovskiy [14] to use Eq. (24.19) for determining the distances from 
planetary nebulae under the assumption that their mass  is a constant. We ob
viously have 

and 
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where r is the radius of the nebula, q is i t s  radius in angular measure, I is the 
surface brightness of the nebula. Therefore from Eq. (24.19) we obtain 

(24.21) 

Using Eq. (24.21), I. S. Shklovskiy assembled a catalog of distances to 
planetary nebulae. In this the proportionality constant in Eq. (24.21) was deter
mined with the aid of statistical parallaxes. Moreover, as already indicated, the 
mass  M was assumed constant for all nebulae. However, for  a nebula the quan
tity M changes with an increase in the H I1 zone in proportion to the expansion of 
the nebula. The quantity M remains constant with time only for nebulae with a 
small optical thickness in the Lyman continuum. Therefore the catalog cited 
above refers just to these nebulae. 

For  some of the nebulae that are nearest  to use, i t  was possible to deter- /324-
mine the distances by trigonometric means. These agreed satisfactorily with 
the distances found from Eq. (24.21). This indicates that the masses  of plane
tary nebulae do not differ from each other by very much. 

25. Forbidden Lines 

1. Necessary conditions for the appearance of forbidden lines. In the spec
t ra  of gaseous nebulae -there are many forbidden Gnes, belonging t o  various atoms 
and ions: 0 0, 0 11, 0 III, N I, N 11, S 11, etc. The most intense of these are the 
principal nebular lines N1 and N2 of doubly ionized oxygen (with wavelengths of 

5006 and 4959 respectively). Of the other forbidden line? one should mention 
the 4363 A line of doubly ionized oxygen, the 3726 abd 3729 A violet doublet of 
singly ionized oxygen, the 6548 and 6584 A red doublet of singly ionized notrogen. 
The energy level diagranis of these ions are shown in Fig. 32. 

08 


Figure 32. 

As is known, "forbidden" lines differ from "allowed" lines by the extreme 
smallness of the transition probabilities. The Einstein spontaneous transition 
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probability coefficients of allowed lines are about 108 sec -';for forbidden lines 
they are a million and billion times smaller. Values of the spontaneous transi
tion coefficients for some of the forbidden lines of the 0 IU, 0 I and N 11ions 
(calculated by Garstang) are given in Table 36 as an example. 

TABLE 36. SPONTANEOUS TRANSITION PROBABILITY 
COEFFICIENTS FOR SOME FORBIDDEN LINES 

. .-.

i I 0 I11 I N I1 	 I 0 1  II 
~-I A I ! .  I a I a 

A 

SP-'D, 5M.3,% '0,021 6583,4 0,0030 6300 ,s  0,0069
'P,--'DZ 4958.91 I 0,0071 6 a 8 . 1  0,00103 6363,88 0,0022
SP,-lDi 4031,O 1,9*10-' 6527,4 4,2-10-' 6392 i.i.10
' D r - ' S ,  4363.21 I 1.6 57%,8 1.08 5577,35 1,28 

Forbidden lines are not observed in the normal stellar spectra. In the spec
tra of gaseous nebulae, however, they have intensities comparable to those of the 
allowed lines. What causes this difference ? 

As we recall, forbidden lines (belonging, to be sure, to altogether different 1325 
ions) a r e  present in the spectrum of the solar corona. In discussing the corona 
(in Section 17) we elucidated the conditions necessary for the appearance of for
bidden lines. Similar conditions obviously also must exist in gaseous nebulae. 

A s  has been established, intense forbidden lines can arise from metastable 
states only, i. e., from those states for which there are no other transitions down
ward except forbidden (in the opposite case allowed transtions occur much more 
frequently than forbidden). But the lifetime of an atom in a metastable state is 
very long (for example, it is 38 seconds for the O++ ion in the 1D2 state from 
which the N1 and N2 lines emanate). Consequently for a spontaneous transition 

from a metastable state to occur, the atom must not be subject to any disturbances 
for a long period of time: neither an interaction with radiation, nor collisions. 
This means that a low radiation density and a low density of matter a re  required
for the appearance of forbidden lines. 

The absence of forbidden lines in stellar spectra indicates that these con
ditions a re  not fulfilled in stellar atmospheres. On the other hand, on the basis 
of the presence of numerous and very intense forbidden lines in the spectra of 
gaseous nebulae one can conclude that the radiation and matter densities in these 
objects a r e  extremely low. 

The conditions necessary for the appearance of forbidden lines can be ex
pressed in the form of certain inequalities. To derive these let us consider an 
atom having three energy levels. Here we wil l  assume that a transition from the /326 
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second state to the first is forbidden (i. e., the second state is metastable), and 
transitions from the third state downward are allowed. In this case AZl << A 3 1 9  

%2' 

Atom excitation can occur both because of the effect of radiation and also 
by means of collisions. The number of second level excitations will obviously be 
of the same order as the number of third level excitations. Consequently the for
bidden line will be comparable in intensity to that of the allowed lines if primar
ily spontaneous transitions will occur from the second state. 

The number of spontaneous transitions from the second state in 1cm 3 in 
1sec is equal to %A 2 1' In addition to these, transitions from the second state 

can also occur due to the effect of radiation; of these, in a given case the upward 
transitions will be much more frequent than the downward (since the Bik coef

ficients are proportional to the Aki coefficients). The number of 2 -3 transi

tions due to the absorption of radiation is equal to n2B23p23. Consequently, in 

order that emission by spontaneous transitions from the metastable state not be 
hindered, the condition 

A21 B &PP- (25.1) 

must be satisfied. Let us represent the radiation density in the form p23 = 

*, where p23 * is the radiation density in the stellar atmosphere and W is 
= W ~ 2 3  
the radiation dilution factor. Then instead of the inequality (25.1) we obtain 

Transitions through collisions with free electrons are also possible from 
the second state. Let us denote the number of collisions of the first kind in 1 

3 cm in 1sec by n2b23, and the number of collisions of the second kind-by n2a21' 
Since collisions of the first kind can be caused only by those electrons whose en
ergy exceeds the atomic excitation energy hvZ3, and collisions of the second 

kind-by electrons with any energy, then usually a21 >> b23. Thus, in order that 

collisions not prevent the emission of forbidden line photons, the inequality 

A21 > 021. (25.3) 

must be satisfied. The quantity aZl can be represented in the form a2 1 = "eU2 lV' 
where n is the free electron density, u21 is the average effective cross section e 
for collisions of the second kind, v is the average free electron velocity. There
fore instead of (25.3) we have 
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The inequalities (25.2) and (25.4) express the conditions necessary for  the /327 
appearance of forbidden lines, comparable in intensity to the allowed lines. 

The quantities W and ne are extremely small in gaseous nebulae. Because 

of this, the inequalities (25.2) and (25.4) are satisfied even for lines with very 
small values of A21, i. e. , forbidden by very strong selection rules. 

From the presence of forbidden lines in the nebular spectrum one can eval
uate the upper limits of the quantities W and ne with the aid of the inequalities that 
have been presented. For  example, on the basis of Table 36 we have A21 = 0.028 

sec -1 for the N 1.and N2 lines. Furthermore, for  a rough estimate one can as
8sume: u21 M 10-16 cm2, v M 10 cm/sec. Therefore from the inequality (25.4) 

we find that ne << 106 cmV3 in a nebula. The N1and N2 lines will, of course, be 
visible even for n x 106 cm -3 , but in this case the population of the second level e 
will already be reduced by collisions of the second kind. When ne >> 106 cm -3 ,
collisions of the second kind will "quench" these lines. 

As  we have seen, the conditions in nebulae are such that the atoms entering 
the metastable state can exist in i t  for a very long time (until a spontaneous down
ward transition). Therefore an enormous number of atoms must be stored in the 
metastable states. This process must obviously occur not only in nebulae but al
so in other objects with small values of the quantities W and ne' 

Let us emphasize that intense forbidden lines are emitted only because of 
the accumulation of atoms in  metastable states since the line intensity is propor
tional to the number of atoms in the initial state and the probability of the corre
sponding spontaneous transition, and the probabilities of spontaneous transitions 
from the metastable states are very small. 

Moreover, the accumulation of atoms in metastable states can lead to the 
appearance of absorption lines for which these states are the lower levels. The 

3
h 3889 absorption line, having the metastable 2 S helium state as the lower lev
el, can serve as an example. In particular, this line is observed in the spectrum 
of the 81 Orion star in the Orion nebula. 

The question of the conditions necessary for the appearance of forbidden 
lines and of the accumulation of atoms in metastable states has been examined in 
detail by V. A. Ambartsumyan [15]. This question is encountered not only in the 
study of gaseous nebulae but also of other objects: nova envelopes, comets, etc. 

2. Collision probabilities. Most of the forbidden lines in  the spectra of 
gaseous nebulae appear because of the excitation of atoms by an electron colli
sion. Therefore for  all the calculations associated with forbidden line emission -/328
of nebulae it is necessary to know the probabilities of inelastic collisions of atoms 
with free  electrons. 
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Let us  consider atomic transitions between states i and j due to the effect 
of electron collisions. We will denote the number of collisions of the f i r s t  kind 

in 1em 3 in  1see by n.b. .. For such collisions atomic transitions occur from the 
1 1J 

lower state i to the upper state j because of the electron energy. Let us  denote 
3

the number of collisions of the second kind in  1em in 1see by n.a ... For such
J J1 

collisions the opposite transitions occur, with the excitation energy of the atom 
being transferred to the electron. 

The quantities b.. and a.., characterizing the probabilities of inelastic col
1J J1 


lisions, are interrelated by a simple expression. To derive this relationship we 
will consider the thermodynamic equilibrium condition. In this case, on the ba
sis of the principle of detailed equilibrium, we have 

(25.5) 

But in the presence of thermodynamic equilibrium the distribution of atomic 
states is given by the Boltzmann formula. Therefore from (25.5) we obtain 

(25.6) 

Obviously the relationship that has been derived is valid in all cases when the 
electron velocity distribution is Maxwellian for the temperature T. 

The quantity aji is very slightly dependent on the electron gas temperature 

since collisions of the second kind can be caused by electrons with any velocity 
(in this case the electron does not lose energy, but acquires it). On the other 
hand, the quantity b.. is very strongly temperature dependent, with bi j  being

1J 

greater,  the greater T. This is caused by the fact that collisions of the f i rs t  
kind can be caused only by those electrons whose energy is greater than the 
atomic excitation energy. In Eq. (25.6) the temperature dependence of b.. is 
given primarily by the exponential term. 11 

The quantities a.. and b.. are expressed in terms of the effective cross  sec-
J1 1J 

tions for the collisions of atoms with electrons. Let (r. .(v) be the effective cross  
1J 

section for a collision of the first kind between an atom and a free electron with 
a velocity v, and nef(v)dv-the number of electrons with velocities from f to v + dv 

in 1em 3 . Obviously we have 

(25.7) 
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where mv
0 
2/2 = hv. 

11 
.. Analogously, for  the quantity a.. we obtain 

J1 


(25 .8 )  

On the basis of quantum mechanical calculations one can assume that in the 
case of the metastable states the effective collision c ross  sections are inversely 
proportional to the electron energy. Therefore the quantity (T. .(v) can be repre
sented in the form 1.l 

(25 .9)  

whre O(i,  j) is the dimensionless effective cross  section (of the order of unity). 
The quantity (T..(v)is given by an analogous formula with gi replaced by g

j’11 


Substituting (25 .9)  into (25 .7)  and using the Maxwellian expression (23 .6)  
for the function f(v), we obtain 

(25 .10)  

For the quantity aji we find 

(25.11)  

The values of the quantities O(i, j )  for several  ions have been calculated by 
Seaton. A portion of his results are presented in Table 37. 

The values of the quantities O(i, j )  that have been calculated obviously differ 
by no more than 40% from the exact values, the estimates (numbers in parenthe
ses)-by no more than a factor of two. 

3. Intensities of forbidden lines. If the probabilities of the collisions giv
ing rise to the metastable states are known along with the Einstein probability 
coefficients for spontaneous transitions from these states, then we can easily cal
culate the intensities of the forbidden lines. Such calculations are greatly sim
plified because of the complete transparency of nebulae for radiation in the for
bidden lines, caused by the extreme smallness of the atomic absorption coef
ficient in these lines. 
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The populations of the energy levels must be found to determine the line inten- /330-
sities. We will now limit our consideration to only the three lowest atomic levels. 
As seen from Fig. 32, this is entirely adequate in the cases of most interest. 

Taking into consideration the transitions due to the effect of collisions and 
the spontaneous transitions, we obtain the following steady-state equations for 
the second and third atomic states: 

(25.12)  

Solving these equations with respect to the quantities nz and n3' we find 

n3 =n1 bu(& +azi +b a )+b d U  
( A i  +As +031 +~ 3 2 )(Azi +&)+(A3T+ ~ 3 1 )  

(25 .14)
bz3 

Equations (25.13)  and (25.14)  are  valid for any free electron density ne' 
upon which the quantities aji and b.. are dependent. In the two limiting cases

1J 

for  large and small values of ne-these formulas a re  greatly simplified. 

For large values of n we can disregard the spontaneous transitions in come 
parison with transitions due to collisional effects. It is easy to see that in this /331 

case, as should be expected, a Boltzmann distribution of atomic states is ob

tained. For example, from Eq. (25 .13) ,  when Eq. (25 .6 )  is used, we obtain 


h*l¶ 

) =ni-en2= ni (a3i 4- ~ z biz +~ b i 3  gz -RT,* 
(as1 +Q32) a=+ a3ibv g! (25.15)  

For small n values we can disregard all transitions from excited states due e 
to collision effects in comparison with spontaneous transitions. In the case given 
Eqs. (25.13)  and (25.14)  assume the form 

m b o )  '(25.16)n2 - - ( b i z +  A31-Azr 

(25 .17)  
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In gaseous nebulae (with some exceptions) the second of these cases occurs, 
i. e. , the populations of the metastable states are determined by Eqs. (25.16) and 
(25.17). 

With the aid of the expressions derived for  the level populations, we can de
termine the forbidden line intensities. Let us find, for example, the ratio of the 
intensities of the lines arising from the 2 -1and 3 -2 transitions. Using Eqs. 
(25.13) and (25.14), we obtain 

(25.18) 

For high f ree  electron densities it follows from this formula that 

(25.19) 

For small ne values Eq. (25.18) gives 

(25.20) 

The formulas that have been found for  the forbidden line intensities will be ap- /332 
plied later not only to gaseous nebulae but also to the envelopes of novae. 

As already stated, for small ne values (and a t  the same time for small val-

TABLE 37. EFFECTIVE COLLISION 
CROSS SECTIONS 

NII 2.39 
2p 0111 1.73 

FIV (1.21)
NeV (0.84) 
0 1 1  1,44 

2p’ FIII (1.00)
NeIV (0.68)
NaV 0.43 
FII (0.95)

2p( Ne111 0.76 
NaIV (0.61)
MgV 0.54 

Commas represent decimal points. 

ues of W) a heavy buildup of atoms 
in metastable states occurs. This 
is well evident from Eqs. (25.16) 
and (25.17), according to which ’ 

the population of an excited level is 
greater,  the lower the probability of 
spontaneous transitions from it. If 
we were to consider the downward 
transition from the second state to 
be forbidden, and transitions from 
the third state allowed, then the 
number of atoms in the secondstate 
would be much greater than in the 
third. In other words, the popula
tion of the metastable level appre
ciably exceeds the population of the 
normal level. The forbidden line 
intensity, then as seen from Eq. 
(25.20). is about of the same order 
as the ‘allowed line intensity. 
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4. Electron temperatures and densities. The forbidden line intensity of any 
atom in the nebular spectrum depends on the number of these atoms, on the free 
electron density and on the electron gas temperature. Therefore the values of 
these quantities can be determined from observations of the forbidden line inten
sities in  the nebular spectrum, 

A method based on the measurement of the relative intensities of the forbid
den lines of the 0 111ion is widely used to determine the electron temperature of 
a nebula. This ign has two metastable states, transitions from which give rise to 
the lines h 4363 A and N1 + N2 (see Fig. 32). These states a re  excited by electron 

collisions. Since the electron must have a higher energy to excite emission in the 
h 4363 A line than to excite emission in the N1 and N2 lines, the ratio of the inten

~ 

sities of these lines (i.e. , the quantity % 4363/ENl + N2 ) must increase with an 
increase in Te' 

The formulas derived above for the metastable state populations and for the 
forbidden line intensities can be applied directly to the 0 111 ion. Let us  call the 
three bottom states of this ion (the ground and two metastable states) states 1, 2 
and 3. If it is assumed that the free electron density in the nebula is small, then 
the ratio of the intensities of the N1 + N2 and h 4363 A lines will be determined by 
Eq. (25.20). 

Let us now convert from the quantities b.. to the quantities a.. with the aid 
11 J1 

of relation (25.6). This allows us to express theotemperature dependence of the 
ratio of the intensities of the N1 + N2 and h 4363 A lines since the quantities a.. 

J1 
are  nearly independent of Te' After completing this conversion, we find /333 

(25.21) 

Equation (25.21) was f i rs t  derived by V. A. Ambartsumyan [13]. Since the 
effective collision cross sections were unknown then, he assumed g2a2l/g3a31 rrl .  

Now on the basis of Eq. (25.11) and Table 37 we obtain g2azlfg3a31 = Q(1,2)/ 

/S2(1, 3) = 8.9. Also taking into account that,in the given case A31/A32 = 0.14, 
instead of (25.21) we have 

(25.22) 

This formula also provides the possibility of determining Te from the ratio of the 

intensities of the N + N and A 4363 A lines obtained from observations.1 2 
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The method that has been discussed for  determining electron temperatures 
of nebulae was employed in the works of Menzel and co-workers [9] and Seaton 
[16]. They obtained Te values in the interval from 7000 to 25,000" for a large 

number of nebulae. These values differ little from those which were found by con
sidering the free electron energy balance (see Section 23). 

If the electron density in the nebula is not low, then collisions of the second 
kind affect the population of the metastable levels. In this case the ratio of the 
intensities of the N 1 + N2 and h 4363 lines will be determined by Eq. (25.18). 

Using Eqs. (25.10) and (25. ll),and also Tables 36 and 37, instead of Eq. (25.18) 
we obtain the approximation 

(25.23) 

J4 

5Just as should be expected, for low electron densities (approximately �or ne < 10 

cm -3 , if Te is about 104 degrees) Eq. (25.23) converts into Eq. (25.22). With an 

increase in n the role of collisions of the second kind increases and the ratio of e 
the intensities of the lines becomes dependent not only on Te but also on ne. For  

large ne values (approximately for ne > 107 cm -3 
), however, the ratio of the line /334 

intensities again depends only on Te and is defined by the formula 

(25.24) 

This formula can also be derived directly from Eq. (25.19) when the numerical 
values of the parameters are substituted into it. In the case given the transitions 
due to collision effects occur more frequently than spontaneous transitions and 
the distribution of atomic levels is Boltzmann. 

Other ions besides the 0 111ion can be used to determine the electron tem
perature of a nebula from the ratio of the forbidden line intensities. Among thes:, 
in particular, is the N I1 ion, having two metastable states from which the A 5755A 
line and the h 6548 and A 6584 doublet are emitted. Applying Eq. (25.18) to 
the N I1 ion, we obtain 

(25.25) 
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For small and large ne values the temperature Te can be found without knowing 
n with the aid of this formula. e 

In the case of intermediate ne values (when collisions of the second kind af
fect the population of the metastable levels, but a Boltzmann distribution of atomic 
levels was still not established) the ratio of forbidden line intensities depends not 
only on T but also on ne. In this case one can attempt to determine both the elece 
tron temperature and the electron density through the simultaneous use of Eqs. 
(25.23) and (25.25). Seaton [16] has made such determinations. However, this 
method of finding Te and ne can be used only infrequently since in most nebulae 
the electron density is low (as was explained in Section 24, ne 103-10 4 cm -3 

). 

It is more convenient to determine the elecotron density in nebulae from the 
ratio of the intensities of the A 3276 and A 3729 A lines, belonging to the 0 I1 ion. 
If the initial levels of these lines are considered to be states 2 and 3, then the 
ratio of line intensities will be given by a formula analogous to Eq. (25.18) (with 
v23A32 replaced by v13A31). Upon substitution of the numerical values of the 
parameters into this formula we obtain /335 

(25.26) 

We see that the exponential term containing the temperature, which is character
istic of Eqs. (25.23) and (25.25), does not enter into Eq. (25.26). This is ex
plained by the close proximity of states 2 and 3 to each other so that hv23 << kTe. 
With the aid of Eq. (25.26) the electron density can be determined without precise 
knowledge of the electron temperature. However, Eq. (25.26) is valid only for 
relatively low temperatures. At  higher temperatures it is also necessary to take 
account of the next two higher levels, i. e. , to consider an atom having five energy
levels. Seaton and Osterbrock [17] made a determination of electron densities by 
this method. 

It is interesting to note that the electron density, obtained from the ratio of 
forbidden line intensities, is independent of the distance from the nebula. At the 
same time the electron density, determined from the Balmer line intensities, i.e., 
from Eq. (24.15), does depend on this distance. Therefore there is the possibility 
of finding the distance from the nebula by comparing the electron densities deter
mined by the methods cited. While this method does not give accurate results, it 
can evidently be refined. 

5. Chemical composition of nebulae. From the ratio of the intensities of 
the lines in a nebular spectrum, belonging to different atoms, one can determine 
the relative abundance of these atoms in the nebula. Such determinations can be 
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accomplished both from lines appearing as the result of collisions, and also from 
lines having a recombination origin. 

Let EZ1 be the amount of energy emitted by a nebula in 1sec in the forbid

den lines corresponding to the 2 -1transition of the given atom. This quantity 
can be represented in the form 

Ea, nzA21h2V, (25.27) 

where "2 is the number of atoms in the second state in 1cm3 and V is the volume 

of the nebula radiating in the line being considered (as we know from Section 23, 
the atoms in different stages of ionization a re  in different zones of the nebula). 

If the nebula density is low, then the number of atoms n2 is determined by 

Eq. (25.16). The f i rs t  term in parentheses in this formula corresponds to col
lisions exciting the second level directly, and the second term-to collisions, 
exciting the third level, and to subsequent transitions of the atom into the second 
level. The second term is usually considerably smaller than the first. There
fore instead of Eq. (25.27) we obtain (approximately) 

Ea =np bizhvizY. (25.28) 

A similar formula can be written for any other atom. From these formulas 
we have 

(25.29) 

where the primes denote quantities belonging to the second atom. From obser
vations one can find the ratio of line intensities EZ1/EZll and the ratio V/V' of 
the volumes emitting in these lines. Therefore Eq. (25.29) makes i t  possible 
for one to determine the quantity nl/nl', representing the ratio of the densities 

of the atoms being considered. It is obvious that the probabilities of exciting 
collisions (and for more precise calculations with the use of Eq. (25.16)-the 
spontaneous transition probabilities) must be found beforehand theoretically for 
such determinations. 

The emission of nebulae in lines arising as the result of photoionizations 
and recombinations was discussed in Section 24. On the basis of Eq. (24.9), the 
amount of energy, emitted by the nebula in 1sec in the hydrogen Balmer lines, 
can be written in the form 

where zk are quantities determined by the system of Eqs. (24.3), and VH is the 

volume of the nebula, emitting in the Balmer lines. Similar formulas can also 
be written down for other atoms whose lines originate in an analogous fashion. 
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With the aid of these formulas, just as before, the relative atom densities can be 
found.. In order to do this one must know the probabilities of spontaneous transi
tions and recombinations. 

It should be noted that the concentration of atoms in  a specific stage of ion
ization is determined by the method that has been discussed (for example, from 
the N1 and Nz lines-the concentration of doubly ionized oxygen atoms). The ion
ization formula must be used in order to estimate the fraction of the atoms of the 
element of interest in other states of ionization. 

Aller and Menzel [lo] determined the chemical composition of planetary /337 
nebulae from the emission line intensities. The data obtained by them on the rel
ative numbers of atoms of various elements a re  listed in Table 38 (the number of 
hydrogen atoms is arbitrarily taken as 1000). Data on the relative numbers of 
atoms in the atmosphere of the Sun and of the star ~ S c o ,obtained by an entirely 
different niethod-from the intensities of absorption lines, a r e  given in the same 
table for comparison. 

TABLE 38. CHEMICAL COMPOSITION OF PLANETARY 
NEBULAE AND O F  STELLAR ATMOSPHERES 

c_c_---- -
Plane-

Element 1 tary 1 Sun /TSco I Plane-

nebula- - . - - . 

H drogen iooo 1003 iooo
d h u m  100 222 175 

0,6 O,OA 0,17
0.2 0,12 0,3 

~~~~n 0,25 0.37 1.0 
-

We see that there a re  no great differences in the chemical composition of 
nebulae and of stellar atmospheres. In particular, hydrogen is the most abun
dant element in nebulae. The number of helium atoms amounts to about one tenth 
of the number of hydrogen atoms, and the number of all other atoms, besides 
these, is about one thousandth. 

26. Continuous Spectrum 

1. Recombinations- and free-free trcnsitions. As  already stated, the spec
t ra  of gaseous nebulae consist -ofemission lines-on a weak continuous background. 
The origin of this continuous background is explained to an appreciable extent by 
recombinations and free-free transitions of electrons in ion fields. Hydrogen, 
as the most abundant element in nebulae, plays the prime role in the origin of 
this radiation. 

To calculate the amount of energy emitted by a nebula in the continuous 
spectrum, we must know the emission ccefficients caused by recombinations and 
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free-free transitions. Since the continuous spectrum absorption coefficients are 
known (see Section 5), we can easily find the emission coefficients that we require, 
using the usual method, i. e., considering the thermodynamic equilibrium condi- /338
tion. 

Let us  denote by E i v  the volume emission coefficient for recombinations in 

the i-th level, and by aiv-the volume absorption coefficient with the i-t'h level. 

In the presence of thermodynamic equilibrium we have 

w i  
t i "  = 0,"- P A!. 

c k =  -1 
(26 .1)  

Let us represent the volume absorption coefficient3in the form CY.1v = n.k. where 
1 1vY 

n. 
1 

is the number of atoms in  the i-th state in  1em and k.
1v 

is the absorption co

efficient, calculated for  one atom. In the presence of thermodynamic equilibrium
the quantity n. is expressed in terms of the ion concentration n+ and the free elec

1 


tron density n by Eq. (5.7), resulting from the Boltzmann and Saha formulas,
e 

For  hydrogen the absorption coefficient k.1v is given by Eq. (5 .6 )  (in which the 

factor 1-e -hv'kT must again be inserted to take account of the negative absorp
tion). Using the formulas cited, from (26 .1)  we obtain 

( 2 6 . 2 )  

where hv > xi. This formula is always correct when the free electron velocities 

have a Maxwellian distribution with a temperature T. 

With the aid of Eq. (26 .2 )  we can, incidentally, find the total number of re
combinations in the i-th level. This number is equal to 

( 2 6 . 3 )  

When giv = 1, Eq. (26 .7 )  for the recombination coefficient Ci is obtained from 
this. 

The volume emission coefficient, caused by recombinations a t  all levels, 
is obviously equal to 

(26.4)  
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Here one must assume that j = 1beyond the Lyman ser ies  limit, j = 2 from the 
Balmer series limit to the Lyman series limit, etc. 

The volume emission coefficient E " caused by free-free transitions, can /339-v y  
be found in an analogous fashion. Using Eq. (5.10) for the volume absorption co
effeicient (Y " and the Kirchhoff-Planck law, we obtain

V 

(26.5) 

Adding Eqs. (26.4) and (26.5), we arrive at the following formula for the 
volume emission coefficient caused both by recombinations and by free-free trans
itions : 

Having in mind the application of this formula to gaseous nebulae, we replaced 
the temperature T in i t  by the electron temperature Te of the nebula. 

The energy distribution in the continuous spectrum, given by Eq. (26.6), 
is characterized by the fact that at  the ser ies  limits the emission intensity in
creases discontinuously as one goes from lower to higher frequencies. This is 
explained by the presence of a new term in Eq. ( 2 6 . 6 ) ,  caused by recombinations 
at the lower level. 

As seen from Eq. (26.6), the emission in the visible portion of the contin
uous spectrum is caused in approximately equal amounts by recombinations and 
free-free transitions (for Te % 10,000'). On the other hand, as we know from 
Section 22, each recombination in the third and higher levels necessarily leads 
to the appearance of one photon in the Balmer lines. Consequently, the number 
of photons in the Balmer lines must be equal in order of magnitude to the number 
of photons in the continuous spectrum. But the line emission is concentrated in 
very narrow frequency intervals. Therefore the continuous spectrum being con
sidered must only play the role of a weak background for the emission lines. Let 
us  find, for example, the ratio of the number of photons in the HP line to the num

ber  of photons in the Balmer continuum (assuming for simplicity that i t  increases 
only with captures in the second level). This ratio is obviously equal to 

and, as calculations show, it is about unity. Thus, almost as many photons are 
emitted in the one HP line as in the entire Balmer continuum. 
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The theory that has been discussed agrees qualitatively with the results of /340
observations. As is known, the continuous spectrum of gaseous nebulae is ac
tually very weak. Moreover an intensity discontinuity is observed at the Balmer 
series limit, characteristic of recombination spectra. However there is no quan
titative agreement between theory and observations. 

From Eq. (26.6) it is seen that the theoretical energy distribution in the 
continuous spectrum follows the law 

(26.7) 


Substituting this expression for the radiant flux Hv into Eq. (6.18), we obtain the 
following relationship between the spectrophotometric temperature Ts and the 
electron temperature Te' 

h 3 h i 
(26.8) 

Neglecting here the quantity e-hv'kTs compared with 1, for the portion of the 
spectrum near the HP line we find 

(26.9) 


For Te = 10,000"this relation gives Ts = 5000". However, the observed spectro

photometric temperatures of nebulae are appreciably higher. In addition the ob
served intensity of the continuous spectrum of nebulae in the visible region mark
edly exceeds its theoretical intensity (with respect to the intensity of the Balmer 
lines). Therefore one can conclude that some supplementary source of radiation 
in the continuous spectrum exists in the nebulae. 

One can arrive at the same conclusion by considering the Balmer discontin
uity. The theoretical Balmer discontinuity, as seen from Eqs. (6.19) and (26.6),
is given by the expression 

(26.10) 


where it is assumed gv = 1 and giy = 1. We see that in the case given D < 0. The /341 
quantity D depends only on the electron temperature and can be calculated for each 
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nebula (for the Te value obtained from the forbidden line intensities). However, 

the observed values of the quantity D a re  greater than the calculated. This can 
obviously be explained by the effect of the supplementary radiation. 

Values of the Balmer discontinuity D, taken from Greenstein's paper [18], 
are presented in Table 39 as a function of the electron temperature Te and the 

quantity C/Bas, representing the ratio of the intensity of the supplementary con
tinuous spectrum to the intensity of the continuous spectrum, caused by recom
binations and free-free transitions, beyond the Balmer series limit. For C = 0 
the Balmer discontinuity is calculated from Eq. (26.10). From the table it is 
seen how the quantity D increases with an increase in the quantity C/Ba for a 

Sconstant electron temperature. 

TABLE 39. BALMER DISCONTINUITY D (WITH 
OPPOSITE SIGN) 

I T. I I Te I 
5300" 2,34 1,02 0.77 O,F3 ' 20000 
7500 1,68 0.96 0,73 0,Gt 25000 

iOO00  1.31 0.87 0,68 0.57 30000 
i5030 0.93 0,70 0.57 0.49 40910 

_ _ ~  
Commas represent decimal points. 

0.72 0.59 0.49 0,42
0.60 0,49 0.42 0.37 
0,51 0,41 0,36 0.32 
0,39 I O , 3 3  0.29 0.26 

The paper by Greenstein that has been cited is devoted to a study of the 
continuous spectrum of the Orion nebula. From observations he found that D = 
= -0.64. If i t  is assumed that the quantity D is defined by Eq. (26. lo ) ,  then, as 
seen from Table 39, the electron temperature will be equal to Te = 22, 000". 

Such an electron temperature is too high for a nebula. In order to obtain T = 
e 

= 12,000" for the value of D that has been found, one must assume C/Bs 
S 

= 0.2. 

From what has been said it follows that the origin of the continuous spec
trum of gaseous nebulae cannot be explained only by recombinations and free-
free transitions. Dust, scattering the stellar radiation, plays some role in the 
origin of the continuous spectrum in connection with diffuse nebulae. In plane
tary nehulae, however, dust is apparently completely absent. A supplementary 
mechanism for the formation of the continuous spectrum of purely gaseous neb
ulae will be indicated below. 

2. Two-photon emission. Besides spontaneous transitions with the emis- /342 
sion of one photon, spontaneous transitions with the emission of two photons are 

also possible from each excited state of the atom. Usually the probability of the 

first transitions (one-photon) is much greater than the probability of the second I 


(two-photon). However, in the case of metastable states, from which the 
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probability of all one-photon transitions is small, the opposite can be true. Inpar
ticular, this is the case with the metastable 2s hydrogen state. As  calculations 
show, the 2 s  -1s transition is more probable with the emission of two photons
than of one. 

The energies of the quanta emitted in the two-photon 2 s  -1s transition can 
be arbitrary, but their sum is constant and equal, obviously, to the energy of the 
La, quantum. Thus, for two-photon transitions the energy is emitted in a contin
uous spectrum. In gaseous nebulae after photoionizations, recombinations and 
cascade transitions an appreciable portion of the hydrogen atoms enter the meta
stable 2s state. As we know, the conditions in nebulae are such that neither ra
diation nor collisions remove the atoms from the metastable states (or remove 
them very infrequently). Therefore the hydrogen atoms, entering the 2 s  state, in 
most cases (if the density is not very great) complete transitions into the 1s state 
with the emission of photons in the continuous spectrum. The significant role of 
these processes in the formation of the continuous spectrum of gaseous nebulae 
was first mentioned in the papers of A.Ya. Kipper [191 and Spitzer and Green-
stein [ZOI. 

Let us designate the frequencies of the two photons emitted during the 2s  -1s transition as yv 12 and (1- y)v12’ where v12 is the L frequency and y is 
Ly 

any number from zero to 1. Let A(y)dy be the transition probability coefficient, 
associated with the emission of a photon in the frequency interval from v12y to 
v12(y + dy). Representing the quantity A(y) in the form 

(26.11) 

where v0 is the hydrogen ionization frequency and a = 27re2/hc is the fine struc
ture constant, the authors cited above obtained the values listed in Table 40 for 
the function $(y). Since $(y) = $(l -y),  then in the table y varies only from zero 
to 1/2. The energy emitted in unit frequency interval is proportional to the quan
tity hvA(y) o r  y$(y). Values of the function yq(y) a re  also given in the table. The 
Einstein coefficient of the two-photon 2 s  -1s transition is equal to 

(26.12) 

With the aid of the quantity A(y) one can easily write an expression for the /34:-volume emission coefficient E 
V Y  

caused by two-photon transitions. Let us denote 
by nzS the number of hydrogen atoms in the 2 s  state in 1cm3. Then, obviously, 
we have 

h d v  = n d  (y) dy - hv, 
or  

(26.13) 
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TABLE 40. THE QUANTITIES $(y) AND y$(y), CHARAC
TERIZING TWO-PHOTON EMISSION 

-

.~~ 

0.00 0 0 0.30 4052 4,546 1,363 
0.05 24313 1,725 0,0833 4,711 1,649 
0.10 12157 2,783 0,2783 4,824 1,929 
0,15 8105 3,481 0,5222 4,889 2,200 
0,20 GO78 3,961 0,7922 4,907 2,455 
0,25 4862 4.306 1,077 

. - I 

Commas represent decimal points. 

To find the quantity n2s, the steady-state equation for the 2 s  state must be 
formulated. Hydrogen atoms enter the 2 s  state after recombinations and subse
quent cascade transitions. Let us designate by X the fraction of all recombinations 
at high levels, starting with the second, which lead to the appearance of atoms in 

the 2 s  state. Then the number of transitions into the 2s state in 1cm 3 in 1 sec 
co 

will be equal to XnenfZ Ci(Te). Calculations show that X = 0.32, approximately
2 

(the quantity X depends slightly on the electron temperature). On the other hand, 
atoms leave the 2s state because of two-photon transitions. The number of such 
transitions in 1cm 3 in  1 sec is equal to n2 sA2s,  1s' On the basis of what has been 
said, we obtain 

(26.14) 

Substituting the quantity %s from (26.14) into (26.13), we find 

(26.15) 

The desired quantity E
V 

can be calculated from Eq. (26.15) with the aid of Table /344 
40. 


It is obvious that the total number of photons, emitted in the 2 s  - 1s two-

photon transitions in 1cm3 in 1 sec, is equal to 
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This number is comparable, in  order of magnitude, to the number of photons emit
ted during recombinations. Therefore two-photon transitions must play a signif
icant role in the formation of the continuous spectrum of gaseous nebulae. 

Adding Eq. (26.15) to the previously derived Eq. (26.6) leads to a contin
uous spectrum energy distribution which agrees better with observational data 
than the energy distribution given by Eq. (26.6). However, before a detailed 
comparison of theory with observations, let us examine certain processes which 
affect the intensity of the two-photon emission. 

3. Effect of collisions. It was assumed above that all atoms, entering into 
the metastable 2s state, complete a spontaneous transition from it into the 1s 

state with the emission of two photons. However, 
transitions due to the effect of collisions are also 
possible from the 2 s  state. Calculations show@ 	 that the most probable of them a re  transitions in
to the 2p state very near the 2 s  (Fig. 33), with 
these transitions being caused primarily by col
lisions with protons. Then an atom spontaneous
ly jumps from the 2p state into the 1s state with 
the emission of an L photon. Such processes

CY 
lead to a decrease in the population of the 2 s  lev
el compared with that determined previously, 
leading also to a decrease in the intensity of the 

Figure 33. two-photon emission. 

Moreover, reverse processes can also oc
cur in nebulae. An atom, entering into the 2p state, instead of a spontaneous 
transition into the 1s state with the emission of an La photon can jump into the 
2 s  state due to the effect of a collision, and then into the Is state with the emis
sion of two photons. At first glance it appears that such processes occur ex
tremely rarely since the 2p - Is transition has a very high probability. In real
ity, however, the situation is not so simple. In an overwhelming majority of /345
cases the La photon does not leave the nebula immediately upon its formation, 
but only after many scatterings. This leads to a considerable increase in the 
residence time of an atom in the 2 1  state. One can assume that on the average 
it is equal to N/A 2p, 1s’ where N is the average number of scatterings of the La! 
photon in the nebula. It is obvious that the greater N, the greater the probability 
of the 2p -2 s  transition due to the effect of collisions and the subsequent two-
photon 2 s  -1s transition. 

To explain the role of these processes, we must take them into considera
tion in the determination of the population of the 2 s  state. Let us write the steady-
state equations for the 2 s  and 2p states. Denoting the atom densities in these states 
by nZs and %p, we have 

@?a(A?s,t + b W P )  =XR +n z P Q Z P a ,  I (26.16) 
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Here XR and (1- x)R are the numbers of atoms entering the 2s  and 2p states, re
spectively, after recombinations and cascade transitions in 1cm 3 in  1sec, and 

m
R = n n+ZCi. The number of 2 s  -2p transitions, produced through the effect of 

e 2 
collisions in  1cm3 in  1sec, is denoted by n2s

b2s,2p’ - and the number of opposite 

transitions-by n2pa2p, 2s’ Instead of the quantity A2p, 1s’ we have written the 

quantity A
2PY 1s

/ N  in  order to take approximate account of the multiple scatter

ing of La! photons in  the nebula. 

Starting from Eqs. (26.16) for the quantity n2s, we obtain the following ex

pression for the desired number of two-photon transitions: 

(26.17) 

This formula should replace Eq. (26.14) when account is taken of the collisions 
removing atoms from the 2s  state into the 2p state and vice versa. 

Let us substitute the numerical values of the parameters into Eq. (26.17): 

A2p, 1s =6.24-108 , A2s, 1s = 8.23, b
2% 2P 

=ne5*10-4 
Y a2p,2s = riel. 5- 10-4 

sec -1. Thenwe obtain 

We see that when the number of scatterings of La photons in the nebula is 	 /346~-
small, namely 

2.4.10-‘S nJv < 1, (26.19) 

Eq. (26.18) assumes the form 

(26.20) 

In this case the 2s  -2p transitions occur more frequently than the opposite trans
itions, and the intensity of the two-photon emission decreases with an increase 
in  ne‘ 

3 12 


. 



When, however, the average number of scatterings of L
a! 

quanta in the neb
ula satisfies the inequality 

N >2.5-I@, (26.21) 

then instead of Eq. (26.18) we obtain 

(26.22) 

This formula gives, for the number of two-photon transitions, approximately the 
same value, o r  greater, as Eq. (26.14). This means that the 2p -2 s  transitions 
balance the 2 s  -2p transitions or  even predominate over them. 

If the inequality (26.21) can be supplemented by the inequality 

2.4- 10-'3 n,N >> I, (26.23) 

then we obtain 

&2., I. = R, (26.24) 

i. e . ,  the number of two-photon transitions is equal to the number of recombina
tions in all levels, starting with the second. In the case given, all L

CY 
photons 

are transformed into two-photon emission. 

A s  we will see  in the following section, the quantity N is very large in neb
ulae. However, it is apparently not so large that the inequality (26.21) is satis
fied. Therefore it must be assumed that the number of two-photon transitions 
in nebulae is determined by Eq. (26.20). 

Equation (26.20) can be replaced by Eq. (26.14),  with the quantity X in i t  
being defined as 

0.32X =  
i +S-IO-s1L." (26.25) 

Correspondingly, Eq. (26.15) can also be used for the emission coefficient E 
V'assuming that X in it is given by Eq. (26.25). 

_4. Comparison of theory with observations. We have already stated that /347
the theory of the formation of the continuous spectrum do nebulae, when only 
recombinations and free-free transitions a re  taken into consideration, cannot 
satisfactorily explain the results of observations. From a comparison of this 
theory with observations i t  must be concluded that some supplementary continu
ous spectrum source exists in nebulae. If two-photon emission is assumed as 
this source, then the agreement between theory and observations will be consid
erably better . 
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A comparison of the observed energy distribution in the spectra of nebulae 
with the theoretical distribution has been made by Seaton. Its results, with re
spect to the Balmer discontinuity, are presented in Table 41. 

TABLE 41. THEORETICAL AND OBSERVED VALUES OF 
THE BALMER DISCONTINUITY IN NEBULAR SPECTRA 

1 
-. 

1-Dabs. I -D theor. 
I 

1 
0.98 i.2fi 0.70 0.95 
0:79 i.00 0.59 0;F-i 
0,61 i.15 
0.82 0.90 

NGC 7662 1 ;3  0;81 0,80
IC 418 I 1.9 0,48 0.69 

O , M  
0,56 
0,59
0.45 

0.89 
0.73 
0;79 
0.50 

Commas represent decimal points. 

The numbers of the nebulae from the NGC and IC catalogs a re  given in the 
f i rs t  column, in the second and third-the values of Te and ne from Seaton's de
terminations, in the fourth-the observed values of the Balmer discontinuity. In 
the last columns a re  given the theoretical values of the Balmer discontinuity for 
three cases: 1)when recombinations and free-free transitions are taken into ac
count; 2)  when two-photon emission with X = 0.32 is taken into account a t  the 
same time; 3) when two-photon emission with the quantity x defined by Eq. (26.25) 
is taken into account at the same time. 

From the table it follows that two-photon emission has a significant effect 
on the magnitude of the Balmer discontinuity. In addition one can ascertain a 
better agreement between observations and theory for values of the quantity X 
found from Eq. (26.25). 

Observations also give the curves of the variation of the emission intensity 
with frequency in the visible portion of nebular spectra. In a number of planetary 
nebulae the emission intensity was approximately constant within a considerable 
spectral region (from 3600 to 4800 A). This fact does not correspond to an ex- /348 
ponential decrease of the emission intensity with an increase in frequency, which 
follows from Eq. (26.6). On the other hand, as seen from Eq. (26.15) and Table 
40, the intensity of the two-photon emission in the visible portion of the spectrum 
increases somewhat with an increase i n  frequency. Therefore, taking two-photon 
emission into account explains, to a considerable extent, the energy distribution 
in the continuous spectrum of planetary nebulae. Some discrepancies between 
theory and observations are possibly caused by inaccuracy in the observations. 

In a number of planetary nebulae, however, the observed energy distribution 
in the continuous spectrum differs quite drastically from the theoretical distribu
tion (taking two-photon emission into account). Such cases have been examined 
in detail by G.A. Gurzadyan [3], who assumes the existence of still another 
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continuous spectrum source is possible in nebulae. In his opinion synchroton ra
diation can be such a source. 

27. Radiation.. Diffusion in Nebulae 

1. L radiation field. In determining the emission line intensities we as-
C 

sumed that the nebulae are transparent for radiation in these lines. There is no 
doubt about this assumption with respect to the lines of the subordinate series 
since there are very few atoms in excited states. It is also valid with respect to 
the forbidden lines (even if the lower state is the ground state) because of the ex
treme smallness of the absorption coefficient, calculated for one atom, for  them. 

Generally speaking, however, nebulae are not transparent for  radiation a t  the 
frequencies of the principal series. This greatly complicates the radiation field 
a t  these frequencies since the radiative transfer equation must be applied in this 
situation. Let us  now calculate the radiation field at the frequencies of the hydro
gen Lyman series. This problem was first considered by V. A. Ambartsumyan 
[21]. Several authors then refined and broadened the solution obtained by him. 

The geometrical model of the nebula has significant value in a study of rad
iation transfer in nebulae. Let us assume that the nebula is bounded by two con
centratic spheres with r ad i i  r1 and r2’ and the nucleus of the nebula is at  the cen

te r  of these spheres. The nebula thickness will be assumed to be small in com
parison with its distance from the nucleus (i.e., r2 - r1 << rl). In such a case 
the nebula can be considered to consist of plane-parallel layers, and the radiation 
dilution factor is constant. 

Let us  first consider the radiation field in the Lyman continuum. When Lc 
photons, coming from a star in the nebula, are absorbed, hydrogen atoms are ion
ized and during subsequent recombinations at the f i r s t  level Lc photons are emit
ted. Such processes of L photon absorption and emission can be continued even 

C 

further. Consequently, diffusion of the L radiation occurs in the nebula. In this 
C 

situation the l’survivalllprobability of a photon during an elementary scattering 
act is equal to the ratio of the number of recombinations a t  the first level to the 
number of recombinations a t  all levels. 

In order  to determine the density of the diffuse Lc radiation, we write the 
radiative transfer equation and the radiative equilibrium equation. In the case 
given the radiative equilibrium equation must express the fact that the number of 
ionizations in each volume element of the nebula is equal to the number of recom
binations. Consequently, we have 

(27.1) 
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where I
V 

is the intensity of the diffuse radiation and I
V 

is the intensity of the ra-
Previouslydiation arriving at a given point of the nebula directly from the star. 

(in Section 23) we wrote a similar equation, ignoring diffuse radiation. 

Let us denote by p the fraction of recombinations at the f i r s t  level. More
over, let us take into consideration the fact that for hydrogen the absorption co
efficient on the basis of Eq. (5.6) changes with frequency in accordance with the 
law 

ktv = kivi (27.2) 

(27.3) 

Then instead of Eq. (27.1) we obtain 

In the case of a nebula consisting of plane-parallel layers, the radiative 
transfer equation has the form 

(27.4) 

where E l v  
is the volume emission coefficient for recombinations at the f i r s t  level. 

l v  
can be represented in the form /350As follows from Eq. (26.2), the quantity E 

(27.5) 

Let T be the optical distance at any point in the nebula from its inner boun
dary a t  frequency vl, i. e. , 

(27.6) 

with the aid of Eqs. (27.2), (27.5) and (27.6) instead of Eq. (27.4) we obtain 

(27.7) 

The quantities C1 and E must obviously be interrelated. Substitution of 
1 V l  

(27.5) into (26.3) gives 
3

&iV, Ei (L)n/t+Ci=4.7-
h AT, 

e k*, . (27.8) 
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Let us  introduce the notation 

(27 .9)  

Then Eqs. (27.7)  and (27.3)  assume the form 

(27.10)  

and 

(27 .11)  

where 

(27 .12)  

The intensity of the radiation, arriving from the star a t  a given point of the nebula, 
/351is obviously equal to 

(27 .13)  

where I * is the intensity of the radiation leaving the stellar atmosphere. There-
V 

fore we obtain 

I 
Q) av
$ (+*e 

-+) L 

S,O(t)=pW VI hv’ 
(27 .14)  

where W is the radiation dilution factor. 

Thus, we have derived two Eqs. (27.10) and (27. ll), for determining the two 
quantities IV(7,9)and S (7) that we are seeking. Still to be added to these equations

C 
are boundary conditions, which in the case given have the form 

l V ( O ’ 6 )  	=Iv(O,n-f+) .  

= O  for e>--. (27.15)Iv(~ , , , f t )  
2 
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The first of these conditions, existing at  the inner boundary of the nebula 
(at 7 = 0 ) ,  means that the intensity of the radiation leaving the nebula is equal to 

the intensity of the radiation entering the nebu

4’0
4-40TiiZF 


Figure 34. 

la. This occurs because the radiation entering 
the nebula at any point on the inner boundary at 
an angle of 4 to the normal is no different from 
the radiation leaving the nebula at an angle n - 4  
on the opposite side (Fig. 34). The second con
dition shows, however, that there is no incom
ing radiation at  the outer boundary (at T = T0). 

An expression for the radiation intensity 
I
V

(7, 9)in terms of the function SC(7)can be 
found from Eq. (27 .10)  for the boundary condi
tions (27.15) .  Substituting this expression into 

Eq. (27. l l ) ,  we obtain the following integral equation for determining the function 
Sc(7): 

sr 

P +r ’ ) ~ ( r ‘ )sc(r)  =-2- $ tK( 1. -r’l) +~ ( r  dr’+ sco(~),  (27.16)  

0 

where /352 

(27.17)  

Equation (27.16)  can be investigated by the methods discussed in Section 3. 
In particular, an exact solution of this equation in explicit form can be derived 
for r0 = co. 

To simpifiy the problem being considered the average absorption coefficient 
for the entire Lyman continuum is sometimes inserted and its corresponding op
tical distance is taken for 7. Then, as it is easy to see, instead of Eq. (27 .16)  
we have 

&(7) =5,P -7[Ei I -$1 +Ei (T+T I ) ]  s, ( ~ 1  +~,o(zj. (27.18)  
0 

The quantity S 
0
(7)can then be represented in t%eform 

C 

(27 .19)  
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where N is the number of Lyman continuum photons arriving f rom the star on 1 
2 c cm of the inner boundary of the nebula in  1sec. 

When T~ = m the exact solution of Eq. (27.18), derived by the method cited 

above, has the form 

(27.20) 

where 

and k is determined f r o m  the equation 

(27.22) 

Values of the quantity 4fic(7)/p, calculated with the aid of Eq. (27.20), are 
presented in Table 42. 

TABLE 42. VALUES OF THE QUANTITY 4Mc(7)/p 

1.42 1,61 1.93 2.68 
1,27 1.46 1.79 2 , s
1.09 1.27 1.59 2,32 
0,92 1 , l O  1.40 2.11 
0.78 0,94 1,23 i .91 
0.66 0.81 1.08 1.73 

0;22 0;28 0;32 OI36 0;43 O;? Oi76 1;s
0.14 0.17 0,20 0,23 0.28 0,37 0,54 1.03 
0,08 0 , l l  0,12 0,15 0,18 0,25 0.38 0.80 
0.05 0.06 0.08 0.09 0.12 0.16 0.27 0,62 

1 

Commas represent  decimal points. 

F o r  T >> 1 the following asymptotic expression for  the function SC(7) can be /3f
derived from Eq. (27.20): 

(27.23) 
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-- 

Values of the quantity k, found from Eq. (27.22), a r e  presented in the table: 

.. 

y 1 0  10.5 10.5 10.7-10.8 (0.9 11.0 

k I1.00 I 0.96 1 0.91 I 0.82 1 0.: 10.52 I 0 
- .  

From Table 42 it is seen that the role of the diffuse radiation depends in
trinsically on the magnitude of the parameter p. In the case Lc radiation diffusion 
this parameter is equal to 

(27.24) 

Calculations from Eq. (27.24) give: 

-

p I 0.39 10.44  10.49 I0.V 

As we know, the electron temperatures of nebulae a re  about 10,000'. There- /354 
fore from Table 42 i t  follows that about the same number of photons of diffuse Lc 

radiation is contained in nebulae as the number of Le photons arriving directly 

froin the star. Thus, i t  must be recognized that the role of diffuse L radiation 
C 

in nebulae is not very great (although i t  is a maximum in the case T0 = to considered by us). 

Such a result is explained by the fact that the fraction of captures a t  the first 
level, i. e. ,  the quantity p, is relatively small. If p would be close to unity, then 
diffuse radiation would predominate over direct. This would be especially notice
able when T >> 1becacse of the smallness of the quantity k. 

After a determination of the function SC(7)we can, by using Eq. (27. lo ) ,  al
so find the quantity IV(7,a),  i. e., the intensity of the diffuse Lc radiation at any 

point of the nebula. As seen from Eq. (27. IO), the frequency distribution of the 
diffuse L radiation depends strongly on the electron temperature Te. 

C 

At each point of the nebula the diffuse Lc radiation supplements the Lc ra
diation arriving directly from the star. The intensity of the radiation arriving 
from the star is given by Eq. (27.13). Obviously the spectral composition of the 
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total L
C 

radiation (i.e., diffuse and arriving from the s tar)  must change significant
ly from one point of the nebula to another. 

2.  L
CY 

radiation field in  a stationary nebula, The optical thicknesses of 

nebulae in  the Lyman series lines are much greater than in the Lyman series 
lines are much greater than in the Lyman continuum. Even in those cases when 
the nebula is transparent for L radiation, it can be fairly opaque for Lyman ra-

C 
diation. Therefore the diffuse radiation in these lines must be considered to de
termine the radiation density in the Lyman lines, 

I t  is obvious thatcthe radiation density in the high terms of the Lyman series 
(starting with L a  cannot be great. This is explained by the fact that spontaneous 
transitions from high atomic states (starting with the third) can occur not only in
to the f i r s t  state, but also into others. Therefore photons in the lines being con
sidered are converted into other photons (in particular, into La!quanta) after a 
small number of scatterings. 

The situation with L line radiation is different. From the second atomic 
Q 

state a spontaneous transition occurs only into the f i r s t  state with the emission 

of an La! photon, and transitions froin the latter, due to the interaction of radia- /355 


tion and collisions, occur extremely rarely (under nebula conditions they are in

frequent even from metastable states). Therefore an La photon that is formed 

cannot vanish in  the nebula. However this photon will escape from the nebula 

only after a large number of scatterings because of the very great optical thick

ness of the nebula in the L line. This leads to a very high density of L radia

tion in nebulae. Q Q 


In considering the diffusion of L 
Q 

radiation in nebulae let u s  adopt the same 
geometrical model of a nebula as before (see Fig. 34). The radiative transfer 
equation a t  any frequency v within a line can be written in the form 

(27.25) 

where k
V 

is the absorption coefficient, calcul.ated for one atom, and E 
V 

i s  the 
volume emission coefficient. 

The radiative equilibrium equation for L radiation can be derived from the 
a! 

steady-state equation for the second level of the hydrogen atom. As we know, 
hydrogen atoms enter the second state as the result of absorption of Lc photons 
and subsequent recombinations. Each recombination a t  a high level (starting
with the second) leads to the entry of an atom into the second state. Therefore 
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as the steady-state equation for this state we have 

0 

nrAzi= n t ~ i p i 2+na+ 2 Ci- (27.26)  
s 

It is obvious that 

(27.27)  

and 

4 
Butpu = kvdv I ,  do, (27.28)  

where hvI2 is the energy of an L quantum. Moreover, using Eq. (27.9) ,  we 
obtain a 

(27.29)  

where the function SC(7)is defined by Eq. (27.16) .  Substitution of the last three 

relations into Eq. (27 .26)  gives 

(27 .30)  

As  explained in the theory of absorption line formation (in Section l l ) ,  ra- /356
diation diffusion in a spectral line is accompanied by a frequency redistribution 
of the radiation during an elementary scattering act. As a good approximation 
to reality one can assume complete frequency redistribution of the radiation (or 
completely noncoherent scattering), for which the emission coefficient E is pro

portional to the absorption coefficient k
V' 

After making such an assumption, we 
can represent the quantity E

V 
in the form 

iv -n l W ,  (27.31)  

where S is frequency independent. 

In fulfilling the relation (27.31)  the radiative transfer Eq. (27 .25)  and the 
radiative equilibrium Eq. (27.30)  can be rewritten as: 
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and 

(27.33)  

Let us  denote the absorption coefficient at the center of the La! line by k0and let us introduce the nebular optical distances: 

(27.34)  

Moreover, let us  represent the absorption coefficient in the form 

k,= koa(z), (27 .35)  

where x is a dimensionless frequency, representing the ratio of the distance from 
the line center to the Doppler half-width of the line, i. e., 

(27 .36)  

For the notations that have been adopted, instead of Eqs. (27 .32)  and (27 .33 )  
we have 

ar,

cose- dt = a(z)(S-lv) (27 .37)  

and 

(27 .38)  

where 

+o 
q =3 and A $ a ( z ) d z  = i. 

ko -QD 
(27 .39)  

Equations (27.37)  and (27.38) must be solved with boundary conditions an
alogous to (27.15).  Using these conditions, from the equations presented we ob
tain the following integral equation for determining the function S(t): 

(27.40)  
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where 
+-

R(t)  = A  5 a2(z)Ei[ta(z)]dz 
-0 (27.41) 

and 

(27.42) 

Let us  note that an obvious relationship exists between the optical distances 
t and r :  

r = qt, r o  = qto. (27.43) 
-4A s  calculations show, q M 10 . Therefore we see that when the nebular optical 

thickness immediately beyond the Lyman series limit is of the order of unity (such 
T0 values must be assumed for  the H 11 zone), the nebular optical thickness a t  the 

L line center will be of the order of ten thousand.
CY 


Calculation of the function S(t) from Eq. (27.40) completely determines the 
L

CY 
radiation field in  the nebula since then the radiation intensity I

V
(t, 9)can be 

found from Eq. (27.37). Other physical quantities, associated with L
CY 

radiation, 
can also be expressed in terms of the function S(t). For  example, from Eqs. 
(27.27) and (27.31) we obtain the following expression for  the degree of excitation 
of the second level of the hydrogen atom: 

(27.44) 

Here  we have also made use of Eqs. (8.12) and (8.5). 

The kernel of the integral Eq. (27.40) is expressed in terms of the function 
K(t), which in turn depends on the quantity a!(x). Therefore the desired function /358 
S(t) will depend intrinsically on the quantity (~ (x ) ,characterizing the absorption 
coefficient profile. 

A rectangular absorption coefficient profile was initially assumed in the 
theory of L radiation diffusion in nebulae, i. e. , it was assumed that a(x)= 1 

a! 

for 1x15 1and a ( x )  = 0 for  1x1 > 1. In this case Eq. (27.40) has the form 

ds(t)= - I [ E i  I f - t ’ l  + E i  (t+t’)JS(t’)dt’+So(t). (27.45)
2 ,  

We will not concern oursehes  here with the solution of this equation, and 
we will only point out that very large values are obtained for  the L radiation 

o! 
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density in the nebula. This means that the L photon undergoes a very large num
a! 


ber of scatterings in  the nebula; namely, the average number of scatterings turns 
out to be of the order of the square of the optical thickness of the nebula at  the 
La!line center, i.e. , 

N c+ toz. (27.46) 

Consequently, for t0 fi: IO4 , N R 108. 

However, the assumption of a rectangular absorption coefficient profile is 
very crude. In reality the absorption coefficient is maximum at the line center 
and decreases gradually as one goes out from the center. Because of this, the 
diffusion of spectral line radiation possesses the following special property. 
Each photon, absorbed at any point of the nebula, can then be emitted at any dis
tance from the line center (since E -k ). In particular, it can be emitted with v v 

such a frequency that the optical thickness of the nebula at this frequency will be 
much less than unity (i.e. , t

V 
= toa(X) << 1). Such a photon leaves the nebula 

unhindered. Consequently, for each photon, absorbed at any point of the nebula, 
there is a definite probability of escaping outside the nebula immediately after 
re-emission. Such a process obviously cannot occur in the case of a rectangular 
profile absorption coefficient. In this case the photon escapes from the nebula 
only after a lengthy diffusion, approaching the edge of the nebula. 

This special feature of the diffusion of spectral line radiation makes i t  pos
sible to easily obtain an approximate solution of Eq. (27.40). From what has 
been said above it follows that an La photon, appearing at any point of the nebula, 
escapes out of it after diffusion within a relatively small region. Consequently,
the La! radiation density at a given point depends little on the radiation density /359 

in portions of the nebula far removed from it. Therefore in Eq. (27.40) for an 
approximation we can remove the value of the function S(t’)for t’ = t outside the 
integral sign. After doing this, we obtain 

m I ” 

trr (27.47) 

But from (27.41) it follows that 

Therefore from (27.47) we obtain 

(27.49) 
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where 

(27.50) 

and E2t is the second integral exponential function. 

It is easy to see that the quantity l/2[L(t0 - t) + L(to + t)] represents the 

fraction of L
a! 

photons, leaving the nebula, of the total number of L
a! 

photons 

emitted at an optical distance t from the inner boundary of the nebula. Conse
quently, Eq. (27.49) expresses the equality between the number of La! quanta, 

originating in a given volume of L
C 

radiation, and the number of L
a! 

photons being 

emitted by this volume and leaving the nebula. 

We can assume that the ratio S(t)/So(t) approximately defines the average 

number of scatterings undergone by an L photon originating at an optical dis
a! 


tance t. From Eq. (27.49) it follows that this number is approximately equal to 

(27.51) 

Equation (27.51) is also easily understood on the basis of the physical sig
nificance of the quantity L(t). 

As an example let us consider the case when the absorption coefficient has 

a Doppler profile, i. e., a!(x) = e+'. In this case /360-

(27.52) 

and 

(27.53) 

For t >> 1, the following asymptotic formulas result from (27.52) and 
(27.53): 

(27.54) 

and 

(27.55) 
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Substituting Eq. (27.55)  into Eqs. (27.49)  and (27.51) ,  we obtain approxi
mate formulas for the quantities S(t) and N(t), respectively. In particular, the 
average number of scatterings of an La photon, originating at  the inner boundary 

of thenebula, is approximately equal to 

(27.56)  

We see that Eq. (27.56)  gives much smaller values for the quantity N than 
does Eq. (27.46).  For example, for to = 104 a value of N fi: 105 is obtained from 

Q 

Eq. (27.56) instead of the value of 10" given by Eq. (27.46) .  Such a result is 
completely understandable: for a Doppler profile absorption coefficient the pho
ton can escape at the outer portions of the line upon emission at any point of the 
nebula, whereas for a rectangular profile absorption coefficient it is deprived 
of this possibility. In addition it should be noted that the average number of La 

photon scatterings in a nebula, given by Eq. (27.56) ,  remains very large never
theless. This is explained by the smallness of the fraction of photons which can 
escape from the nebula in the outer portions of the line (i.e., at the point where 
tocr(x) << 1) for a large nebular optical thickness at the line center. 

If the function S ( t )  is known, then with the aid of Eq. (27 .37)  one can find the 
intensity of the L line radiation leaving the nebula, i. e. , the quantity I (t, 9),and 

a! 1.1 
also the radiation flux Hv(tO) that is leaving. The L 

CY 
line profile in the nebular 

spectrum is determined in this manner. As  explained, L 
CY 

photons leave the neb
ula primarily in the outer portions of the line. Therefore the L line should have /361

CY 
a double-peaked profile. It is obvious that the separation of the peaks will be 
greater, the greater the optical thickness to of the nebula. 

The problem of the diffusion of L radiation in a nebula for complete fre
a! 

quency redistribution of the radiation and for a Doppler profile absorption coef
ficient was first  considered in Zanstra's paper [ 2 2 ] .  This same problem was 
subsequently considered for more general assumptions. In particular, the true 
radiation frequency redistribution law, expressed by Eq. (11.l), was used. In 
addition, the methods of the modern multiple scattering theory of radiation, dis
cussed in Section 3, were used in solving this problem (see [23, 241, etc.). 

It should also be noted that we encounter the problem of the diffusion of 
resonance line radiation in a number of fields of physics (in particular, in plas
ma physics and in gas discharge theory). An integral equation of the type (27.40), 
in which the function K(t) is defined by Eq. (27.52) ,  applies to these cases also. 
L. M. Biberman 1251 f i rs t  derived such an equation, and i t  has then been inves
tigated by many authors. 

3. La radiation field in an expanding nebula. Until now we have assumed 
that the nebula is stationary. In reality different portions of nebulae can move 
with respect to each other. In particular, as already stated, planetary nebulae 
expand with velocities of the order of several tens of kilometers per second. 
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The relative motion of matter in nebulae should be taken into consideration 
in  discussing the diffusion of radiation in them. The motion of matter affects the 
radiation field because of the Doppler effect. This effect is obviously very small 
in  the continuous spectrum case, but very large in the case of spectral lines. 

Let us  now examine the diffusion process for La radiation in an expanding 

nebula. Here, just as before, we will represent the nebula in the form of a thin 
spherical layer. 

Let us first assume that the expansion velocity v is independent of the dis
tance r from the center of the star. In this case the expansion of the nebula will 
be expressed in the statement of the boundary condition for  r = r1‘ When we were 

considering a stationary nebula, then we assumed that the intensity of the radia
tion leaving the nebula through the inner boundary is exactly equal to the intensity 
of the radiation entering the nebula in the opposite direction. In the case of an 
expanding nebula, however, these two radiations are displaced in frequency with 
respect to each other so that this equality will not be true. If we assume that the 
expansion velocity is much greater than the average thermal velocity of an atom 
(i.e. , v >> u), then the radiation coming into the nebula from its opposite side 
will no longer be absorbed in the nebula. Therefore the intensity of this radia
tion can be considered equal to zero. Thus, instead of the boundary conditions 
(27.15), existing for a stationary nebula, we must write the following boundary 
conditions for a nebula expanding with a high velocity: 

I+, 8)=0 for  6< 
(27.57)

R
Iu(to,6)=0 for e>-. 

2 

If, of course, the expansion velocity of the nebula is comparable to the av
erage thermal velocity of an atom, then the first  of these conditions must be 
suitably altered. 

From Eqs. (27.37) and (27.38) for the boundary conditions (27.57) we ob
tain the following integral equation for determining the function S(t): 

S(t)=,$i ta K ( / t-t’l)S(t’)dt’+S,(t), (27.58) 

where the function K(t) is defined by Eq. (27.41). The approximate solution of 
this equation has the form 

(27.59) 

where L(t) is given by Eq. (27.50). The La!radiation density in an expanding 

nebula will obviously be less than in a stationary one. 
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We will now assume that the expansion velocity of the nebula depends on r. 
In this case the Doppler effect must be taken into account in the radiative trans
f e r  equation and in the radiative equilibrium equation (see [26]). 

Let us  consider radiation of frequency v, the direction of which forms an 
angle 9 with the normal to the plane-parallel layers of the nebula. Along this 
path the central frequency for  the absorption coefficient will vary in accordance 
with the relationship 

v,' =vo +vo-
C 

cose, (27.60) 

where v0 is the central line frequency for  a stationary observer. Therefore the 

absorption coefficient can be represented in the form 

(27.61) 

v - v o  

Uwhere i t  has been taken into consideration that x = - and v - Assuming, 

AvD O C '  

as before, that radiation diffusion is accompanied by a frequency redistribution 
during the elementary scattering act, we take Eq. (27.31) for  the emission co
efficient E

V 0  
On the basis of what has been said, we have 

(27.62) 

as the radiative transfer equation. The radiative equilibrium equation will now 
have the form 

(27.63) 

For  v = 0 the last two equations transform into Eqs. (27.37) and (27.38). 

An integral equation for  determining the function S(t) can be derived from 
Eqs. (27.62) and (27.63) for the boundary conditions (27.15) or (27.57). For 
simplicity we assume that the expansion velocity v increases linearly with an 
increase in the optical distance t, i. e., v(t) = v(0) + dv/dt- t, where dv/dt = 
const and dv/dt > 0. Then the function S(t) will be defined by Eq. (27.40) or 
(27.58), in  which the function K(t) is equal to 

I" 




where 

i dv y=--
a d t '  (27.65)  

An approximate solution of the equations cited is given by Eqs. (27.49)  or 
(27.59),  in which 

In gaseous nebulae the quantity y is usually very small, and the quantity 
t is very large. Let us  therefore consider two special cases of Eq. (27.66).  

1. We will assume that y t  << 1, i. e., the nebula is expanding withasmall 
velocity gradient. In the limiting case we can set  y = 0. Then Eq. (27.66)  
transforms into Eq. (27.50) ,  and the L 

a! 
radiation field in the nebula is deter

mined by the escape of photons in the line wings from i t  (in the same manner as 
was considered in detail above). 

2. Let us assume that y t  >> 1, i. e. , the velocity gradient in the nebula is 
large. In the limiting case we set  t = Then it will be impossible for photons 
in the line wings to escape, and the L

CY 
radiation field in the nebula is determined 

by the escape of photons from it because of the Doppler effect. In the case given 
Eq. (27 .66)  assumes the form 

When A y << 1, from (27.67)  we obtain 

4L=-3 Ay. (27 .68)  

. 
It should be noted that the quantity Ay does not depend on the absorption. 

coefficient profile. In fact, we have 

(27.69)  
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Therefore, using Eq. (8.12), we obtain 

kon-
A 

=hB,z (27.70) 

Consequently, /365 

(27. 71) 

In the case being considered the approximate expression for the function 
S(t) has the form 

(27.72) 

This formula, of course, can only be used for nebular regions far from the boun
daries (as also, in general, the expressions for S(t) derived by the method that 
has been discussed). 

It is of interest  to ascertain under what conditions these special cases of 
Eq. (27.66) occur in reality. As already established, the answer to this problem 
depends on the value of the quantity 

(27.73) 

If 6 >> 1, then line photons leave the nebula primarily because of the Doppler ef
fect, and the function S(t) is defined by Eq. (27.72). If, however, 6 << 1, then 
photons leave the nebula primarily in the l i r : >  ..$ings. This conclusion is com
pletely understandable since the quantity 6, on the basis of Eqs. (27.55) and 
(27.68), is equal (in order of magnitude) :.o the ratio of the fraction of photons, 
leaving the nebula because of the Doppler effect, and the fraction of photons 
leaving in the line wings. 

We can rewrite Eq. (27.73) in  the form 

(27.74) 

where Ar is the nebula thickness. It is very difficult to evaluate the quantity 
dv/dr; however, it must be remembered that for real nebulae dv/ds must be 
taken instead of dv/dr, i. e., the velocity gradient averaged over all directions. 
As will be shown in Section 28, z / d s  e v/r in  nebulae always (because of the 
curvature of the layers). Therefore instead of Eq. (27.74) we obtain 

A r v8 = - - .  
r n  (27.75) 
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We will apply Eq. (27.75)  to planetary nebulae. Since the nebular thick- /366-
ness amounts to a few tenths of its radius, and the nebular expansion velocity is 
several times greater than the average thermal velocity of an atom, then in the 
case given 6 is of the order of unity. Consequently, the function L(t) is defined 
by Eq. (27.66)  itself, and not by its limiting cases. In other words, the escape
of a photon in the line wings, as well as the escape because of the Doppler ef
fect, must be taken into consideration in determining the L radiation field in a 
nebula. Q! 

Also of interest is the problem of finding the La! radiation field in the en
velopes of novae, The expansion velocity of these envelopes is much greater than 
the expansion velocity of planetary nebulae. Therefore the inequality 6 >> 1will 
be satisfied in the given case. Consequently, the L radiation field in nova en-

a! 

velopes is determined primarily by the escape of photons from the envelope be
cause of the Doppler effect. 

4. 	 Radiation pressure in nebulae. The determination of the L radiation 
a! 

field in the nebula gives the possibility of calculating the pressure caused by 
this radiation. V. A. Ambartsumyan [21] first made such a calculation, indicat
ing the large role of the L radiation pressure in the dynamics of nebulae. The 

a! 

intensity of the radiation pressure is especially large at  the boundaries of the 
nebula, where the radiation flux reaches a maximum value. The intensity of the 
radiation pressure is different at the boundaries of stationary and expanding neb
ulae. If the nebula is stationary, then the La! radiation flux at the inner boundary 
is equal to zero and the radiation pressure acts only a t  the outer boundary with 
it being directed outward. In an expanding nebula, however, the radiant flux dif
fers from zero not only at the outer but also at  the inner boundary. In the given 
case, therefore, the radiant pressure acts at both boundaries, with i t  being di
rected from the star at the outer boundary, and toward the s tar  at the inner 
boundary. In both cases the L radiation diffusing in the nebula leads to an in-

a! 
crease in the thickness of the nebula by its very pressure. 

The radiation pressure force in the L
CY 

line, acting per unit volume in 1 
sec, is equal to 

(27 .76)  

3where n1 is the number of hydrogen atoms in 1 cm , k
V 

is the absorption coef
ficient calculated for one atom, H is the radiant flux and c is the velocity of 

Vlight. 

At first we will assume that the nebula is stationary o r  is expanding with 
no velocity gradient. For a rectangular profile absorption coefficient instead /367 
of Eq. (27.76) we have 

fr ---. 
n&H 

c ' (27 .77)  
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where H is the total radiant flux in  the L line. A determination of the quantity
a! 

f from Eq. (27.77) for  the nebular boundaries is not difficult since the number r 
of L

CY 
photons, leaving the nebula, is equal to the number of stellar Lc photons, 

absorbed in the nebula. Calculations show that under the influence of radiation 
pressure in  the L

CY 
line the outer portions of a stationary nebula should undergo 

an acceleration of about 1km/sec in 10 years. The layers of an expanding neb
ula, nearest  the star, should undergo a deceleration of approximately the same 
magnitude. 

As we know, however, the assumption of a rectangular absorption coeffi
cinet profile is very crude. In reality the radiation pressure force in the L

a! 
line must be determined not from Eq. (27.77), but from Eq. (27.76). In this 
situation the problem of the diffusion of line radiation must be solved beforehand 
for  the real absorption coefficient profile and when the radiation frequency re
distribution is taken into account. As explained previously, during radiation dif
fusion there occurs a transition of photons from the central portions of the line 
into i ts  wings. Therefore for a large nebular optical thickness a t  the center of 
the L line the radiant flux H is great in  the line wings and small in  i ts  central 

a! v 
portions. On the other hand the absorption coefficient kv is large in the central 

portions of the lines and small in its wings, Because of what has been said, Eq.
(27.76) gives a much lower value for the radiation pressure force at the boundary 
of the nebula than does Eq. (27.77) (by about a factor of 100, according to Zan

4stra's calculations [22], for a nebular optical thickness of about 10 at the center 
of the La! line). 

In a nebula, expanding with a velocity gradient, the radiation pressure force 
in the L line will also be much less than the value found from Eq. (27.77) (see

a!
@ G I ) .  

To explain the meaning of the results obtained, it must he borne in mind 
that a planetary nebula cannot exist for a long time. Because of the nebula ex
pansion the density in i t  decreases and the nebula ceases to be visible. If the 

4nebula is expanding with a velocity of 30 km/sec, then during a time of about 10 
-2 4 3 

years i ts  radius becomes about 10l8 cm, and its density-about 10 g/cm , 
i. e., about the same as the average density of interstellar space. During this 
same time, as follows from these calculations, the radiation pressure in the 
L
a! 

line can give rise to a velocity difference of about 10 lun/sec in the nebula. 

Even through this effect is not very great, i t  must be taken into consideration 
in the solution of certain problems. 

The results that have been presented apply to a nebula which has no H I /362 
zone. In such nebulae most of the hydrogen atoms are in an ionized state. On 
the other hand, only neutral hydrogen atoms are subject to the radiation pres
sure  in the La! line. Therefore the acceleration of a volume element, caused 
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by radiation pressure, is not very great. More precisely, this acceleration w is 
defined by the equation 

(n,+n+)nraw =	-ni 5 kYHvdvt (27.78)
C 

and in the H 11 zone the inequality n+ >> nl is satisfied. 

The opposite relation holds in the H I zone, i.e., n
l 

>> n+. However, al

most no L
CY 

photons originate in this zone so that the radiant flux H
V 

is very 

small. However, the radiation in the La line, coming from the H 11 zone, is 
not absorbed in the H I zone for the most part, and this means no radiation pres
sure  is produced. This is explained by the fact that the Doppler line width Av,, 
in the H I zone is very small because of the smallness of the temperature Te. 
Therefore the radiation pressure in the L line in the H I zone cannot be appre
ciable. a 

It is interesting to note that in nebulae having H 11and H I zones the radia
tion pressure in the L line reaches a maximum in the transition region between 

a! 
these zones. A s  calculations show, in those cases when the mass of the H I zone 
is relatively small, the radiation pressure can even cause this zone to move with 
respect to the H 11 zone. In the opinion of G. A. Gurzadyan [3] planetary nebulae, 
comprising two envelopes, are formed in this fashion. 

G. A. Gurzadyan, engaging in a study of the spatial shapes of planetary 
nebulae, divided them into three groups: planet-like, two-envelope and ring-
shaped. He assumes that these nebular types are successive stages in their 
development. As the nebula expands, i ts  optical thickness beyond the Lyman
series limit decreases. At f i rs t  T8 >> 1, i. e., the nebula has H I1 and H I zones. 

At this time the nebula is planet-like. When the quantity T~ becomes of the order 
of unity, the H I zone begins to separate from the H 11 zone due to the effect of 
radiation pressure in the L 

Q 
line. The two-envelope nebula is formed in this 

situation. With further expansion of the nebula the second envelope disperses 
and ceases to be visible. The first envelope (for which T~ << l),receding at a 
great distance from the star, is observed by us in the form of a ring. This rep
resentation of the evolution of planetary nebulae is corroborated by several facts, 
One of them is that nebular sizes increase, on the average, as one goes from 
planet-like nebulae, to two-envelope, and then to ring- shaped. 

Thus, we see that the radiation pressure in the L line can cause appre- /369
a! 

ciable relative displacements in nebulae. This is explained both by the large
number of L

CY 
photons in the nebula, and also by the large value of the absorp

tion coefficient a t  the L line. As we know, certain effects, associated with a 
radiation diffusion (the drift of photons into the line wings, the Doppler effect 
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caused by the presence of a velocity gradient), reduce the L radiation pressure 
in nebulae, but it still remains significant. a! 

Besides the radiation pressure in the L 
a! 

line, the L
C 

radiation pressure 
also plays some role in nebulae. However, unlike the L

CY 
radiation pressure 

which causes relative movements in the nebula, the radiation pressure in the 
Lyman continuum causes an accelerated expansion of the entire nebula. It is ob
vious that the magnitude of this acceleration is defined by the equation 

EeMw=--, (27.79)C 

where M is the mass of the nebula and Ec is the energy emitted by the star in the 
Lyman continuum in 1sec (ora portion of this energy if the optical thickness of 
the nebula beyond the Lyman series limit does not exceed unity). The quantity 
w can easily be calculated. As we know, the mass of a planetary nebula is about 
0.01 M a ,  and the quantity Ec should be of the order of ergs/sec. There
fore from Eq. (27.79) we find that the expansion velocity of the nebula should in
crease by about 1km/sec in 1000 years due to the effect of the Lc radiation pres
sure, i. e., by a fairly noticeable amount during the lifetime of the nebula. One 
can assume that this conclusion is confirmed by observational da ta  since the ex
pansion velocity v of the nebula is greater, on the average, the smaller the value 
of the dilution factor in the nebula. 

The observed expansion of planetary nebulae renders the assumption that 
a nebula forms as the result of a star shedding its outermost layers very prob
able. As confirmation of this hypothesis one can mention the fact that the mass 
of the nebula amounts to only a small fraction of the mass of the star. At  the 
present time, however, we are  unable to explain the stellar catastrophe which 
leads to the formation of a planetary nebula. At one time it was thought that 
nebulae originate in the outbursts of novae o r  supernovae. A comparison of the 
expansion velocities of the envelopes that a re  ejected (about 1000 km/sec) with 
the expansion velocities of nebulae (which are only about 10 km/sec) contradicts 
this notion. Moreover, the mass of nova envelopes is much less (by about 1000 
times) than the mass of a planetary nebula. In view of this the assumption was 
expressed that planetary nebulae are formed in the detachment of an envelope 
with a low velocity from any unstable stars (for example, from red supergiants).
An entirely different point of view consists of the fact that the planetary nebula, 
along with i ts  nucleus, originates from prestellar matter (see [3]). 

It should again be noted that the cosmogonic role of planetary nebulae is 
evidently quite significant. Up to the present time about 300 such nebulae have 
been observed; however, their total number in the Galaxy is probably at least 
10,000. As a nebula expands, it ceases to be visible and, as already mentioned, 
the average lifetime of a nebula is about 10,000 years. From this it follows that 
on the average one nebula vanishes (i.e., it becomes unobservable) each year in 
the Galaxy. Moreover, each year one nebula must obviously form. And since 
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the age of our Galaxy is about l o l o  years, then in all the Galaxy about l o l o  neb
ulae should have formed (and then vanished). We can, therefore, conclude that 
a considerable number of the stars were once the nuclei of planetary nebulae. 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 
14. 

15. 

16. 

17. 

18. 

19. 

20. 


21. 

22. 


23. 

REFERENCES 

Vorontsov-Vel'yaminov, B. A. Gaseous nebulae and novae, Izd-vo AN 
SSSR, 1948. 

Aller, L. H. Gaseous Nebulae, 1956. 
Gurzadyan, G. A. Planetary nebulae, Fizmatgiz, 1962. 
Bowen, I. The origin of the nebular lines and the structure of the planetary 

nebulae, Ap. J. 67, 1, 1928. 
Shayn, G. A. and V. F. Gaze. Some results of a study of luminous galactic 

nebulae, Izv. Krymskoy astrofiz. obs. 6,3,1951; Second list of diffuse 
nebulae, Izv. Krymskoy astrofiz. obs. 7,93, 1951. 

Zanstra, H. The radiation processes of planetary nebulae and the temper
atures of the central star, Zs. f. Astrophys. 2,1,1931. 

Cillig, G. The theoretical capture spectrum of hydrogen, MN 96,771,1936. 
Sobolev, V. V. Determination of the electron temperatures of planetary 

nebulae and refinement of the temperatures of their nuclei, Trudy As
tron. obs. LGU 12,3,1941. 

Menzel, D. et al. , Physical processes in gaseous nebulae, Izd-vo inostr. 
lit. , 1948. 

Seaton, M.J. The solution of capture-cascade equation for  hydrogen, MN 
119,90,1959. 

Nikitin, A. A. An investigation of the recombination spectrum of stars and 
nebulae, Vestn. Leningr. un-ta, No. 1,1963. 

Chamberlain, J. W. Collision exitation of hydrogen in a gaseous nebulae, 
Ap. J. 117,387,1953. 

Ambartsumyan, V. A. Theoretical astrophysics, GONTI, 1939. 
Shklovskiy, I. S. A new scale of distances to planetary nebulae, Astron. 

Zh. 33, No. 2,  1956. 
Ambartsumyan, V. A. The excitation of the metastable states in the gas

eous nebulae, Tsirk. Pulkovskoy obs., No. 6, 1933, 
Seaton, M.J. Electron temperatures and electron densities in planetary 

nebulae, MN 114, 154, 1954. 
Seaton, M.J. and D. E. Osterbrock. Relative [OIII intensities in  gaseous 

nebulae, Ap. J. 125, 66, 1957. 
Greenstein, J. L. Continuous emission in the Orion nebula, Ap. J. 104, 

414, 1946. 
Kipper, A. Ya. The continuous spectrum of planetary nebulae, Coll. 

"The growth of Soviet science in the Estonian SSR 194O-195OT1,1950. 
Spitzer, L. and J. Greenstein. Continuous emission from planetary 

nebulae, Ap. J. 114, 407, 1951. 
Ambartsumyan, V.A. On the radiative equilibrium of a planetary nebula, 

Izv. Pulkovskoy obs., 13, 31, 1933. 
Zanstra, H. On scattering with redistribution and radiation pressure in a 

stationary nebula, Bull. Astr .  Inst. Netherlands, XI, N 401, 1949. 
Sobolev, V.V. The scattering of frequency-shifted radiation, Vestn. 

Leningradsk. un-ta, No. 5, 1955; No. 11, 1955; No. 19, 1957. 

/371 


336 




24. 	 Ivanov, V. V. The scattering of resonance emission in stellar and nebular 

atmospheres, Astron. Zh., 39, 1020, 1962; 40, 257, 1963. 


25. 	 Biberman, L. M. Theory of resonance emission scattering, ZhETF, 17, 

416, 1947. 


26. 	 Sobolev, V. V. Scattering of L emission in nebular and stellar envelopes, 

Astron. Zh. 34, 694, 1957. a 


337 




CHAPTER VI 

VARIABLE STARS 

The vast majority of stars exhibit absorption spectra that do not change 
with time. The atmospheres of these stars have been examined in detail in 
Chapters I and 11. In accordance with observational data it was assumed that 
there were no nonstationary processes in the atmospheres. The example of the 
Sun, to be sure,  indicates that such processes do occur in reality (spots, prom
inences, etc.). They occur, however, on a relatively small scale and they have 
no effect on the observable characteristics of the star as  a whole. 

/372 

At the same time, a large number of stars with drastic and rapid changes 
in spectrum and brightness have been detected by observers. A characteristic 
feature of these s ta rs  is the presence of bright lines in their spectra. It is ob
vious that nonstationary processes are occurring on an appreciable scale in the 
outer layers of these stars. As detailed investigations have shown, these pro
cesses are associated with the ejection of large amounts of matter from the 
star. As a result, an expanding envelope, in which bright spectral lines also 
originate, is formed around the star. 

Stars, ejecting matter, are extremely diverse. Some stars eject matter 
more o r  less continuously over a long time. Among these, in particular, a re  
the Wolf-Rayet, P Cygni and Be types. In other cases the ejection of material 
from the star is explosive in nature. We encounter such a process in the out
bursts of novae. Especially large amounts of matter and energy are evolved in 
the outburst of a supernova, representing one of the most magnificent phenom
ena in the Galaxy. 

Stars of these types a re  the most outstanding representatives of variable 
stars. Their study constitutes a very important problem of astrophysics since 
it contributes, to a large degree, to an explanation of the nature of stars and 
of the course of their evolution. 

The physical conditions in the envelopes of variable stars are similar in /373
certain respects to the conditions in gaseous nebulae. Therefore, in the dis
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cussion of variable stars we will frequently make use of the results set forth in  
the preceding chapter. 

28. Stars with Bright Spectral Lines 

1. Early class stars with bright lines. Stellar spectra with bright lines 
predominantly belong either to the very earliest o r  very latest classes (we a re  
not now speaking of novae and related stars). Of these, early class stars with 
bright lines, i. e., Wolf-Rayet, P Cygni and Be type stars, have been studied 
most thoroughly. This is explained primarily by the simplicity of the physical 
processes occurring in  the atmospheres of these stars. 

Wolf-Rayet (WR) type stars correspond to spectral class 0 in degree of 
atomic excitation and ionization. Their spectra consist of wide emission bands 
of H, He I, He 11, C 111, N 111and other atoms with very high ionization potentials 
superimposed on a continuous background. Weak absorption lines a re  seen on 
the violet side of some of the bright bands. The width of the bright bands amounts 
to several tens of angstroms, and the intensity within a band is sometimes 10-20 
times greater than the intensity of the continuous spectrum. Therefore the energy, 
emitted in the bright lines by the star,  is comparable to the energy emitted in the 
continuous spectrum (in the visible or ultraviolet regions). 

In the work of Beals [l]it was established that the spectra of WR stars a re  
divided into two sequences: nitrogen and carbon. Bands of nitrogen in various 
stages of ionization a re  found in the spectra of the f i rs t  sequence, but no carbon 
o r  oxygen bands; bands of carbon and oxygen in various stages of ionization are 
found in the spectra of the second sequence, but no nitrogen bands. The degree 
of atomic excitation and ionization is about the same in both sequences. Subse
quently, WR type spectra with nitrogen and carbon bands were discovered. 
Nevertheless it should be assumed that the nitrogen lines a re  more intense in 
some WR spectra, in others-the carbon lines. 

WR stars are  often found to be components of spectroscopic binary systems.
Some of them are eclipsing variables. The study of such systems has provided 
much valuable information on WR stars. Thus, it has been found that their masses 
are about 10 solar masses. 

The absolute visual magnitudes of WR stars are  about -3". These s tars  
are some of the brightest objects of the Galaxy. However, novae, several years
after outburst, and some nuclei of planetary nebulae also exhibit WR spectra. 
These stars are appreciably weaker than true WR stars. Their absolute visual /374

mmagnitudes a re  equal to +5  , on the average. 

P Cygni type stars,  belonging to spectral class B, are adjacent to the WR 
stars. Bright lines, approximately symmetrical about their center frequencies 
and bounded by absorption lines on the violet side (Fig. 35a), a re  seen in the 
spectra of these stars, just as in the spectra of WR stars. In this case, however, 
unlike in the WR spectra the width of the bright lines is not so great and the ab
sorption lines, on the other hand, are much more intense. 
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Besides the P Cygni type stars, other stars of 
spectral class B also exhibit emission lines. They 

a)+ are simply called Be type stars. The line profiles
in the spectra of type Be stars can be characterized-d	in the following manner: a narrower emission line, 
which in some cases is a single line and in others-
split (Fig. 35b and e), is superimposed on a broad 
and shallow absorption line. The spectra of type Be 

b) 	 I s ta rs  undergo pronounced changes with time. For 
I - example, the relative intensities of the bright line
% 	 components vary. Sometimes the bright lines van

ish completely and the type Be star becomes a nor
mal class B star. Small variations in the stellar

c) 	& -I brightness are also observed along with the spectral
changes. 

VU 


The explanation of the emission spectra of the 
Figure 35. stars being considered is based on the hypothesis 

that material is ejected from the star,  leading to the 
formation of an extended moving envelope around it. Since the emission dilution 
factor in the envelope is small, then, based on Rosseland's theorem (see Section 
22), we can verify that the envelope should absorb the high-frequency photons 
coming from the s tar  and convert them into low-frequency photons. In other 
words, the envelope emission occurs, in principle, the same as the emission of 
a gaseous nebula, i. e., because of the ultraviolet energy of the star. For the 
appearance of bright lines in the stellar spectrum it is clearly necessary that 
its temperature be quite high (greater than approximately 20,000", as simple 
calculations show). Therefore the bright lines, appearing because of the ultra
violet energy of the star, are also observed only in the spectra of the hottest 
stars (classes 0 and B). 

The nature of the ejection of material from the s tar  can be judged from the 	 /375-
profiles of the bright lines in the stellar spectra. After Beal's work 111 i t  has 
been assumed that there is a continuous ejection of material from type WR stars 
with an approximately constant intensity in all directions. Such a movement of 
matter must lead to the observed line profiles, symmetrical with respect to the 
center frequency. The material, receding from us, gives the portion of the line 
extending toward the red portion of the spectrum, and the material approaching 
us-the ultraviolet portion of the line. Since the spectra of type WR stars do 
not undergo pronounced changes with time, it must be assumed that the ejection 
of matter from them is stationary. 

The explanation of the line profiles in the spectra of type Be stars is more 
complex. According to Struve [2] these stars are  rotating very rapidly so  that 
broad absorption lines a re  also observed in their spectra. Judging from the 
width of these lines, the rotational velocities of the s ta rs  at  the equator amount 
to several hundred kilometers per second. Struve assumed that because of the 
rotation, matter is ejected from the equatorial plane of the star, leading to the 
formation of a gaseous ring rotating about the star. Bright lines, superimposed 
on broad absorption lines, also appear in the gaseous ring. Since the rotational 
velocity of the ring is less than the rotational velocity of the star (because of the 
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conservation of angular momentum), the bright line appears narrower than the 
absorption lines. In fact, the rapid rotation of type Be s ta rs  apparently contri
butes to the ejection of matter from them, but it is not the reason for the ejec
tion. This follows from the fact that the emission spectrum of type Be stars 
undergoes irregular changes with time (and sometimes disappears entirely). 
Therefore the ejection of matter from these s ta rs  must exhibit an irregular
character. 

A theory for the formation of the spectral lines in the extended moving en
velopes of stars is needed to interpret the spectra of type WR, P Cygni and Be 
stars (and of other variable stars). The fundamentals of the theory will  be dis
cussed below (for more details see [31 and [41). 

2. Emission line profiles. The envelope motion velocities usually amount 
to tens and hundreds of kilometers per second, i. e, , they are much greater than 
the average thermal velocities of atoms. Therefore one can assume that the em-
mission line profiles are determined primarily by the envelope movement. The 
effect of other factors on the line profile can be neglected in a first approximation. 

Let us now derive a formula determining the emission line profile for  an 
arbitrary field of velocities in the envelope. We will also take into consideration 
the possible opacity of the envelope to the emission line. 

We will consider a line, arising through a transition from the k-th state in 
a given i-th atom. The absorption coefficient aik and the emission coefficient /376 

E ik will  be considered constant in the interval vik - Avid2 < v < vik +Avil(2 
and equal to zero outside this interval. H e r e  vik is the central frequency of the 

Uline, Avik = 2 -c vik’ where u is the average thermal velocity of an atom, c is the 
velocity of light. 

Let us take an xyz coordinate system with origin a t  the center of the s ta r  
and the z-axis pointed toward the observer. Let us denote the velocity of atoms 
in the envelope by v(x, y, z), and i ts  projection on the z-axis by v (x, y, z). We 
will assume that v >>u. Z 

It is clear that under the assumptions that have been made with respect to 
(Yik and radiation of frequency v will be transmitted to the observer not by 
entire envelope but only by some region of i t  located on both sides of the plane 
of equal radial velocities, defined by the equation 

The boundaries of this region are from the surface of (28.1) along the line of 
sight (i.e., along the z-axis) to a distance corresponding to a Avik/2 change in 
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frequency. Denoting the limiting values of z by z1and z2 and making use of the 
smallness of u with respect to v, we obtain 

(28.2) 

o r  

2u 


(28.3) 

Let Iik(x, y, v) be the intensity of the radiation coming from a point on the 

stellar disk with coordinates x,y at a frequency v within the line. Since the 
%icknessff of the layer giving the emission at  frequency v (i.e., the distance 
z - z 1) is relatively small (with the exception of isolated points), then the quan

tities aik and E ik can be assumed to be constant in this layer along the z-axis 

and equal to their values at the surface (28.1). Therefore, for the intensity 
Iik(x, y, u)  we have 

The total energy, emitted by the envelope at frequency u into a unit solid 
angle, is given by the formula 

using (28.3) and (28.4), instead of (28.5) we obtain 

(28.6) 

The integration here is done over the surface (28.1). Equation (28.6) also de
fines the desired emission line profile. 

As an approximation the envelope can be divided into two regions: opaque 
to radiation in the line being considered and transparent to this radiation. In 

I av, I aik 
is greater than unity; in the second it is.the first region the quantity -.--2u 

less than unity. The integral in (28.6) in the first region is equal to 

(28.7) 
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and in the second 

1 az I 
(28.8) 

The quantities a,ik and sik entering into these formulas a re  expressed in 

terms of the concentration ni of absorbing atoms and the concentration nk of 

emitting atoms in the follow manner: 

(28.9) 

(28.10) 

where Aki and Bik a re  the Einstein transition coefficients. Taking account of the 

relationship between and Bik' we obtain 

(28.11) 

Equation (28. ll),just as it should, passes over to Planck's formula when n d n i  
is defined by the Boltzmann formula. 

Thus, to calculate the emission line profile it is necessary to know both 
the velocity distribution in the envelope, as well as the distribution of absorbing 
and emitting atoms. It will be shown below how the quantities n. and % can be 
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found. Thereby the problem of calculating emission line profiles will finally be 
solved. 

As an example of the application of Eqs. (28.7) and (28.8) let us find the 
profiles of emission lines, formed by an envelope that is expanding with a velocity 

/378 
that is constant for all layers (v = const). Let us denote the distance of a given 
volume from the center of the star by r, and the angle between the direction of 
motion of the atoms and the observer's direction-by 9. The we will have 

(28.12 
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and the surface of equal radial velocities, corresponding to frequency v, will  be 
defined by the equation 

(28.13) 

Let us  first assume that the envelope is transparent to the line emission. 

Then from Eq. (28.8) , taking into account that dxdy =2 min29 rdr,  we obtain 

(28.14) 

Thus, a transparent envelope gives an emission line with a rectangular profile 
(i.e., the intensity within the line is constant). The line width clearly corre
sponds to twice the envelope expansion velocity. 

If the envelope is opaque to the line emission, then from Eq. (28.7) in  the 
case being considered we obtain 

(28.15) 

or, taking (28.13) into consideration, 

(28.16) 

Consequently, an opaque envelope gives an emission line with a parabolic profile. 

The profiles of emission lines, formed by an envelope in which the expan
sion velocity v depends on r, can be determined analogously. As is easily under
stood, for a transparent envelope in this case the line profiles will be symmetrical 
with an intensity that decreases with distance from the line center (since they are 
obtained by the overlapping of rectangular profiles of various widths). These 
profiles are very similar to the profiles of lines formed by an opaque envelope 
for v = const. Therefore before drawing conclusions about the velocity distribu
tion in the envelope from the line profiles, it is necessary to ascertain whether 
the envelope is transparent o r  opaque to line emission. 

To answer this question, a few of the emission lines of one and the same 
atom in the stellar spectrum can be examined. In the case of a transparent en
velope the profiles of all these lines must clearly be similar to each other. If,
however, the envelope is partially opaque to line radiation, then different parts 
of the envelope will be opaque to different lines so that the profiles of the lines 
being considered should differ from each other. 

In those cases when the envelope is close to the s t a r  (for example, when 
it is formed as a result of the stationary ejection of matter from the star), the 
effect of screening by the star of a part  of the envelope must be taken into con
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sideration in determining the emission line profiles. The lines become asym
metrical because of this effect. 

If the envelope is opaque to line radiation, then in that portion of the enve
lope that lies between the s tar  and the observer, an absorption line forms. h the 
case of radial ejection of matter from the star, this line is shifted toward the vi
olet end of the spectrum. The emission line, forming in the envelope, is partially 
superimposed on the absorption line. 

With the aid of Eq. (28.6) one can also determine the profiles of emission 
lines formed by an envelope that is being ejected from a rotating star. This prob
lem has significance for interpreting the spectra of type Be stars. 

3. Emission line intensities. The intensities of emission lines for the gas
eous neb& case were determined in Section 24. As we recall, the problem re
duced to solving a system of linear algebraic equations 

(28.17) 

expressing the stationarity conditions for each of the excited atomic states. Here 
ni’ ne’ n+ are  the densities of atoms in the i-th state, f ree  electrons and ions re
spectively, n n+C.(T ) is the number of electron captures of ions at  the i-th level e i e  
in 1cm per 1 sec. In writing these equations i t  was assumed that the nebulae 
a re  transparent to radiation in the subordinate series lines since the degree of 
atomic excitation in nebulae is very low. 

The emission lines in the spectra of WRY P Cygni and Be type s ta rs  arise,  
in principle, in the same way a s  the emission lines in nebular spectra, i. e. , as  
a result of photonionization and recombinations. However, the degree of atomic 
excitation in the envelopes of the stars being discussed is not a s  low as in nebu
lae so that the envelopes can be opaque to radiation in the subordinate series 
lines. Therefore Eq. (28.17) cannot always be used to determine emission line 
intensities in the stellar spectra. Generally speaking, in a given case a new sys
tem of equations must be formulated and solved, taking account of the opacity of 
the envelope for line radiation, i. e. , including the radiative transfer equations 
for each line together with the stationarity equations for each level. 

The need to take into consideration the envelope movement complicates the 
problem even more. If, however, the velocity gradient in the envelope is quite 
large (and in the envelopes being considered this is the case), then the problem 
is greatly simplified. This is explained by the fact that in the presence of a ve
locity gradient in the envelope line quanta can emanate not only from its boundary 
regions but also from the inner regions because of the Doppler effect. Roughly 
speaking, the envelope becomes transparent, to some degree, to the line radia
tion because of the velocity gradient. In this case the problem of determining 
the emission line intensities again reduces to some system of algebraic equations 
(but not linear, as in the case of nebulae). 
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In order toformulate the equations cited above, the following processes 
must be taken into consideration: 1)the ionization of atoms from each state due 
to the stellar radiation; 2)  recombination at each level: 3)  spontaneous transi
tions from upper states to lower; 4)  transitions from lower states to upper through 
the absorption of photons in the lines emitted by the envelope. 

The number of spontaneous transitions from the k-th into the i-th, occuring 
in 1cm3 in 1sec, is equal to nk%. If the envelope is transparent to radiation in 
a given line, then the quanta emitted during this transition escape to the outside 
unhindered, and the reverse transitions do not occur at all. Lf the envelope is 
not transparent to the line radiation and there is no velocity gradient in it, then 
nearly all the line quanta a re  absorbed in the envelope and the number of transi
tions from the k-th state to the i-th is almost exactly equal to the number of trans
itions from the i-th state to the k-th. In the presence, however, of a velocitygra
dient in the envelope some fraction of the line quanta escape from the envelope 
because of the Doppler effect. We will denote this fraction by pik' Then the num

ber  of k - i transitions will be greater then the number of reverse transitions by 
the amount nk%Pik. 

Since the number of atomic transitions from the k-th state into all other 
states must be equal to the number of transitions into the i-th state, then we 
have 

where niBicpic is the number of ionizations from the i-th state, The quantities 

'ic are assumed to be known and equal to /38 1 

(28.19) 

where pic * is the emission density beyond the i-th series limit in the stellar at
mosphere and W is the radiation dilution factor. 

In determining the quantities p.ik we assume, just as before, that both the 

absorption coefficient Q!ik 
and the emission coefficient P.

ik 
for a line of frequency 

vik are nonzero and constant within the interval Av ik = 2 U vik and equal to zero 
c 

outside this interval. Moreover, let us assume that the region of the envelope,
in which a given line radiation is absorbed, is relatively small (because of a 
large velocity gradient) so that the density of matter and the velocity gradient in 
the region can be assumed to be constant. 

Let us  consider line radiation of frequency vik, emanating from some vol
ume element in the direction s within a solid angle dw. Along the path from s to 
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s + ds the following fraction of the emitted photons will be absorbed: 

(28.20) 

where the factor e-aiks takes account of radiation absorption along the path from 

zero to s, and the factor 1,- 1vi; -Vik 1 
is the change in the radiation frequency

d v a  
because of the Doppler effect. Here 

(28.21) 

The fraction of the photons absorbed along their entire path in the envelope will  be 
equal to 

(28.22) 

where the quantity s1is determined from the condition 

(28.23) 

Multiplying Eq. (28.22) by dw/47r and integrating over all solid angles, we 
obtain the fraction, absorbed in the envelope, of the total number of photons emit
ted by a given volume. In the nomenclature that has been adopted this fraction is 
equal to 1- pik. Therefore, for the quantity p.ik we obtain /382 

(28.24) 

If the envelope at a given point is opaque in all directions, then 

(28.25) 

where 17is the quantity 121,averaged over all directions. If the envelope at 
2u
a given point is transparent in all directions (i.e., z a i k  << I),then Pik = 1, 

just a s  it should be. 121 
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Thus, for determining the quantities ni we derived the system of Eqs. (28.18), 

in which the quantities p.ik are defined by the relations (28.24). The absorption 

coefficients aik entering into these relations are given by Eq. (28.10), presented 
above. 

If Eqs. (28.18) are solved for different parts of the envelope, then we can 
determine the total amount of energy emitted by the envelope in any spectral line. 
The following equation serves this purpose: 

where the integration is done over the entire envelope volume. For  a transparent 
envelope Pik= 1and Eq. (28.26) passes over to Eq. (24.8) of the preceding chap
ter. 

The system of Eqs. (28.18) can be solved numerically. To do this the V a l 
ues of four parameters must be specified: the stellar temperature T, (on which 

Pic * depends), the electron temperature Te (on which Ci depends), the dilution 

factor W and the quantity P12. Values of the Balmer decrement, determined for  

T, = 20, OOO", Te = 20, OOO", P12 = 0.001 and for two values of the dilution factor: 

W = 0.01 (case I) and W = 0 . 1  (case 11), are listed in Table 43 as an example. 

TABLE 43. THEORETICAL BAL-
MER DECREMENT IN THE SPEC

TRA OF MOVING ENVELOPES 
O F  STARS 

Line Case Nebu
lar - I  

case. .  

1.61 0,97 2.79 
I,oo 1.00 1 1 0 0  
0,44 0.83 0.49 
0,24 0.59 0,28 
0.15 0,32 0,18 

Commas represent decimal 
points. 

Values of the Balmer decrement for 
the case of transparent envelopes (for ex
ample, of nebulae) for  T- = 20,000" are 

e 

given in the same table for  a comparison. 
They are obtained by solving the system 
of Eqs. (28.17), which is a special case 
of the system of Eqs. (28.18) for Plk=0, 
P.ik = 1(i = 2, 3,. ..) and when ionizations 
from the excited states are ignored. 

In the case of nebulae the Balmer 
decrement depends only on the tempera
ture T and changes very little for a e 
change in it. In the case, however, of 
envelopes moving with a velocity gradient, 
the Balmer decrement depends on-sever

a1 parameters and can assume very different values. /383 

Observations indicate that in the spectra of WRY P Cygni, Be and nova type 
s ta rs  the Balmer decrement changes markedly from one star to another and in Be 
and nova type stars i t  also changes with time within the spectrum of an individual 
star. This can be explained by the fact that in the envelopes of these stars the 
values of the parameters W and P12, upon which the Balmer decrement depends 
heavily, are changing. 
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To calculate the parameter /3 12 the velocity field in the envelope must be 

known. Let us assume, for example, that the atoms are moving in a radial direc
tion with velocity v, depending on r. It is easy to show that in such a case 

(28.27) 


where 9 is the angle between the radius vector direction and the direction of a ray. 
From Eq. (28.27) it is seen that even when dv/dr = 0, a velocity gradient exists 
in the envelope (caused by the curvature of the layers). In this case 

(28.28) 


After a determination of E s / 8 s  the quantity p12 is found from the formula 

(28.29) 


where nl is the number of atoms in the ground state in 1 cm 3 and k12 is the ab

sorption coefficient at the resonance line, calculated for one atom. 

An evaluation of the quantity plz from the formulas presented leads to the /384 


values which a re  necessary for explaining the observed Balmer decrement. 

Recently, many authors have determined the Balmer decrement by solving 
the system of Eqs. (28.18)and subsequent application of Eq. (28.26). Especially 
detailed calculations of this nature have been made by A. A. Boyarchuk [51. 

4. Type Be stars. A s  already stated, to explain the line profiles in the 
spectra of type Be stars the assumption is made that these stars are  rotating rap
idly and matter is being ejected from them. Profiles of the emission lines, aris
ing in the envelope ejected from a rotating star,  can be determined frGm Eq. (28.6) 
for the appropriate velocity field in the envelope. These profiles prove to be very 
similar to the emission line profiles in the spectra of type Be stars. The observ
ed changes in line profiles can be explained by a change in the rate of election of 
matter from the star. Here, in particular, a change in the ratio between trans
parent and opaque portions of the envelope plays a role. 

The relative intensities of the Balmer emission lines in the spectra of Be 
type stars usually do not agree with the intensities calculated for the case of neb
ulae. They can, however, be explained by means of the theory proposed above, 
in which envelope opacity and the presence of a velocity gradient a r e  taken into 
consideration. Envelope opacity has considerable significance for the first terms 
of the Balmer series. The envelopes can be assumed to be transparent for the 
high terms of this series. 
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The hydrogen atom concentration in the envelopes can be determined from 
the observed Balmer emission line intensities. Let us assume, for simplicity, 
that the envelope is transparent for the line corresponding to the transition k -2. Then in Eq. (28.26) one can assume that Pzk = 1and % = zkn n+, wheree 
zk is found from the system of Eqs. (28.17) (see Section 24 for more details 

about this). In the case given Eq. (28.26) assumes the form 

Let us assume that the hydrogen atoms in the envelope are predominantly in 
an ionized state and the density of matter decreases in i t  in inverse proportion to 
the square of the distance from the center of the s tar  (although the last assump
tion is crude for envelopes of type Be stars). Then we will have 

(28.31) 

where r0 is the radius of the star and n e is the free electron density near the /385 
surface of the star. Now, instead of Eq. (28.30) we obtain 

On the other hand, the energy emitted by the envelope in the lines can be repre
sented in the form 

(28.33) 

where Wzk is the equivalent line width (expressed in centimeters). Equating the 

last two equations, we find 

(28.34) 

Equation (28.34) provides the possibility of determining the density of free 
electrons (and this means protons also) in the envelope from the measured equ.iva
lent line width. Then the concentration of neutral hydrogen atoms can be found 
from the ionization formula (23.14). In this way it  was determined for several 

Be type stars that on the average n e M 10l1 cm-3 and n1 
0 = l o  5 cm -3 . 

Be type s tars  differ from B class stars not only in the presence of bright 
lines in their spectra but also in certain anomalies in the continuous spectrum. 
As observations have show, Be type s ta rs  with emission are ,  on the average, 
redder than B class stars without emission. Moreover, the Balmer discontinuity 
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for  Be type stars was found to be smaller than for B class stars. These differ
ences a re  clearly caused by the existence of envelopes for Be type stars. As a 
result of the conversion of the high-frequency stellar radiation in the envelope, 
photons a re  produced both in the lines and in the continuous spectrum. 

A determination of the amount of energy emitted in the continuous spectrum 
by a Be type star is not difficult. Since the envelope is transparent to the fre
quencies of the continuous spectrum (the star itself is seen through the envelope), 
then the energy emitted by a Be star at frequency v can be represented in the 
form of the sum 

Ly = L,' + L F V ,  (28.35)  

where L * is the energy emitted by the star itself (without the envelope), and 
V 

Lv 
env is the energy emitted by the envelope. It is obvious that 

(28.36)  

To find the quantity L env , however, we must make use of Eq. (26 .6 )  for the 1386 
V 

volume emission coefficient, caused by recombinations and free-free transitions. 
Integrating this expression over all solid angles and over the entire volume of 
the envelope and using Eq. (28.31) ,  we obtain 

(28 .37)  

From the formulas presented it follows that the following changes should 
be observed with an increase in the ejection of matter from a star:  

1) the visual brightness of the star should increase; 
2)  the spectrophotometric temperature should be reduced (since the spec

trophotometric temperature of the envelope is low); 
3 )  the Balmer discontinuity should be reduced (since the Balmer discon

tinuity of the envelope is negative). 

The last two conclusions are made on the basis of Eqs. (26 .9)  and (26.10) 
of the previous chapter. 

With an increase in the matter ejected from the star, an increase in the 
energy emitted in spectral lines by the envelope should be observed along with 
the changes cited in the continuous spectrum. A l l  these effects will be greater, 
the higher the stellar temperature and the greater the optical thickness of the 
envelope beyond the Lyman series limit. 
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quence. 

A detailed interpretation of the continuous spectrum of Be stars can be 
given with the aid of the formulas written above. V. G .  Gorbatskiy [6] did this 

1937 1938 1J3 1940 1J41 

2s 
 %c?, 
I6
'i-$12 ~-+ JJ 

:g u 

t937 1938 193 194a 1941 
Commas represent decimal 
points. 

Figure 36. 

for the star y Cassiopeiae, among the 
best known of the stars under consider
ation. From 1936 to 1941 very drastic 
changes occurred in the brightness and 
spectrum of this star. During that per
iod of time the stellar brightness in
creased three times. Along with the in
crease in brightness there also occurred 
a decrease in the spectrophotometric tem
perature, a decrease in the magnitude of 
the Balmer discontinuity and an increase 
in the intensity of the Balmer lines (Fig. 
36). All this can be explained by the fact 
that the rate of ejection of matter from 
the s tar  increased three times, and then 
decreased. In other words, the star 

ejected three envelopes from itself in se-From a comparison of theory 
with observations the fundamental param
eters  of the s tar  and envelope were de
termined. It was found that the radius of 
the star is equal to three solar radii, the 
stellar temperature is equal to 34, OOO",  

3the number of hydrogen atoms in 1 cm 
near the surface of the s ta r  is about 

1012-1013 and the average electron tem
perature of the envelope is Te *15,000
20,000". 

The continuous spectra of many Be type stars have been studied in detail by 
Tsoy Dyay 0 [7], who measured the Balmer discontinuity and the spectrophoto
metric temperature in different regions of the spectrum (with interstellar absorp
tion taken into account). On the basis of these data he determined the energy 
emitted by the star and by the envelope, the atom density in the envelope and the 
amount of matter ejected by the star per year (about Mafor Be type s ta rs  of 
various subclasses). 

5.  Wolf-Rayet type--stars. The presence, in the spectra of WR type stars,  
of broad bright lines that do not vary noticeably with time led to a hypothesis con
cerning the unchanging ejection of matter from these stars. Since the bright line 
is symmetrical with respect to the center frequency and is sometimes bounded 
on the violet side by an absorption line, then it is reasonable to assume that the 
ejection of matter is radial. In this situation the bright line is produced through 
the entire depth of the envelope, and the absorption line-in the portion of the 
envelope approaching the observer. We have already seen that in the case of 
ejection of matter with a constant velocity the bright line should have a rectan
gular profile. Lines with such profiles a re  actually found in the spectra of WR 

/387-

352 




stars. More frequently, however, lines a re  observed with rounded profiles, 
which can be explained with the aid of Eq. (28.6) both by accelerated o r  deceler
ated motion of the ejected atoms and by the opacity of the envelope to the line 
emission. 

The weakness of the absorption lines in the spectra of WR stars can be 
caused .not only by the small optical thickness of the envelope for lines, but also 
by a filling-in of the absorption line with an emission line. In those cases, how
ever, when the lower level is metastable, the absorption line is extremely strong. 

The h 3889 A absorption line, arising from the metastable 23 S state of neutral 
helium, can serve as an example. The strong absorption in these lines is ex
plained by the buildup of atoms in metastable states because of the smallness of 
the radiation dilution factor and the density of matter throughout the envelope. 

I t i s  clear thatin the case of radialejection of matter from a s tar ,  the width 
Ah of the emission line must be proportional to the wavelength A.  Such a re
lationship between these quantities is actually observed for the spectra of WR 
stars (which is one of the strongest arguments in favor of the ejection hypothesis). 

Measured and computed values of Ah for three WR stars are  listed in Table 
44 as an example (the proportionality coefficient assumed between Ah and h is 
given under the star number). The ejection velocities of matter from WR stars, 
found from .the width of the emission lines, a r e  about 1000-2000 km/sec. 

TABLE 44. WIDTHS O F  EMISSION LINES IN 
SPECTRA O F  WR STARS (IN ANGSTROMS) 

6583 153.0 1 z,7 I 74,2 I 63,1 1 57,5 I ::I 1
486i 41,2 40,5 U , 8  46,7 43,9
4 x 0  33,4 36,2 35,O 41,7 37,8 

Commas represent decimal points. 

The matter ejected from a star can be decelerated o r  accelerated under th.e 
influence of stellar attraction and radiation pressure. The function describing 
the change in velocity v with increasing distance r from the center of the star de
termines the matter density distribution in the envelope. To find the dependence 
of the density p on the velocity v, let us consider the flow of matter through a 
sphere of radius r. The amount of matter, flowing through this sphere during 
time dt, will obviously be equal to 

dAl'= 4 + p  (P)u ( r )dt. (23.38) 
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When the motion of the matter is stationary, dM/dt = const and therefore from 
(28.38) we have 

(28.39) 

If the velocity of movement is constant, then / 389 

(28.40) 

In the case of decelerated motion the density decreases more slowly with an in
crease in r than according to (28.40); in the case of accelerated motion-more 
rapidly. 

The problem of the dependence of the velocity v on the distance r in the en
velopes of WR stars can be solved in the following manner, Since the envelopes, 
in principle, shine the same as gaseous nebulae, then the envelopes, just as in 
nebulae, an emission stratification should exist. This means that the lines of 
atoms with high ionization potentials a r e  formed in envelope layers nearer the 
s ta r  than the lines of atoms with low ionization potentials. Therefore when the 
velocity changes appreciably in the envelope, the lines of atoms with different 
ionization potentials should have different widths. Observations indicate that 
line widths in the spectra of WR stars a re  greater, the lower the ionization po
tential. This is especially evident in the case of the He I and H e  11 lines. For 
example, for star HD 192103 the expansion velocity of the envelope is equal to 
1290 km/sec according to the He I lines and 975 km/sec according to the He II 
lines. Thus, we must conclude that the atoms ejected from a WR star are ac
celerated. Because of this, as seen from Eq. (28.39), the density of matter in 
the envelope decreases more rapidly than in inverse proportion to the square of 
the distance from the center of the star. As  calculations show, accelerated mo
tion of the atoms, ejected from WR stars, can be explained by the effect of ra
diation pressure on them (especially beyond the limits of the fundamental He I1 
series). 

Using Eq. (28.38), we can find the amount of matter ejected by a WR star 
per year. This amount of matter is equal to 

W = 4nro2p(ro)u(ro).3.1G-107, (28.41) 

where the radius of the lower boundary of the envelope is denoted by ro (coincid

ing with the photosphere radius for WR stars). The quantity p ( r0) for the enve

lopes of WR stars can be determined in the same way as for the envelopes of Be 
8stars, i. e., by means of Eq. (28.34). Assuming, also, that r0 x 5ro and v = 10 

cm/sec, from Eq. (28.41) we find that a WR star in one year loses a mass equal 

to about of the solar mass. 
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This result  is of considerable interest for cosmogony. Since the mass of WR s t a r s  
is about 10 solar masses,  then a s ta r  cannot remain in  the WR stage more than a 
million years. If, however, it is taken into consideration that we know of no stars 
whose mass  exceeds the mass  of the WR stars (with the exception of the related /390
class 0 stars), then we can make the assumption that the stars being considered 
have arisen directly from a prestellar phase of matter and, moreover, quite re
cently. Such an assumption is corroborated by the fact that most WR stars enter 
into the structure of stellar associations which, as is known, are considered to 
be very young formations in terms of a number of criteria. 

Equation (28.41) also makes it possible to estimate the mass  lost annually 

by P Cygni and Be type stars. It turns out to be about M e  for  PCygni type 

stars and about 10-6-10-8 M a  for  Be type stars.  These stars, just like WR stars, 
are also characteristic members of the stellar associations. 

From the relative intensities of the emission lines in the spectra of WR stars 
one can obtain some information about the chemical composition of their envelopes. 
This is done by comparing the observed line intensities with the theoretical inten
sities determined on the basis of solving the system of Eqs. (28.17) o r  (28.18). 
In this manner, in particular, it was found that the number of helium atoms in the 
envelopes of WR stars is several times greater than the number of hydrogen atoms 
(see paper of S. G. Slyusarev [8]). Envelopes of WR stars, in this regard, are 
considerably different from the atmospheres of ordinary s ta rs  and gaseous neb
ulae in which the ratio of the number of helium atoms to the number of hydrogen 
atoms is the reverse. Another anomaly of the envelopes of WR stars, as we re
call, is that in some of them there is much nitrogen but little carbon and oxygen, 
and in others-much carbon and oxygen but little nitrogen. Thus, the chemical 
composition of the envelopes of WR stars must be considered to be very anom
alous. 

Temperatures of WR stars can be determined from the ratio of the emission 
line intensities to the intensity of the continuous spectrum. Zanstra's method, 
discussed in detail in the previous chapter, is used for this. More precisely, the 
stellar temperature is found from Eq. (22.29), applied to different atoms. Tem
peratures of WR stars, determined by B. A. Vorontsov-Vel'yaminov [9], are 
listed in Table 45. The star number from the HD catalog is given in the f i r s t  
column; subsequent columns give the stellar temperatures (in thousands of de
grees) found from the lines of different atoms (the ionization potential in volts is 
given below the atomic symbols). 

We see that the temperatures of WR stars ,  determined by this method, are 
very high. Moreover, it is seen from the table that the temperatures of a single 
s tar ,  found from different atomic lines, are different. This is caused primarily 
by a lowering of the temperatures determined from lines with relatively low ion
ization potentials. Such atoms (in particular, hydrogen and helium) are heavily 
ionized in the envelopes of WR stars and therefore absorb only a small portion /391
of the stellar energy beyond the limits of their fundamental series. For example, 
calculations show that the optical thickness of an envelope of a WR star beyond 
the Lyman series limit is about 0.01. Therefore the temperatures determined 
from the hydrogen lines are very low for the stars being considered-about 
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TABLE 45. TEMPERATURE O F  WR STARS 
(IN THOUSANDS OF DEGREES) 

~~ .- - -" - _I 

H e  I c III or  He 11 N IV TC24.5 N rn 54.2 77.047.4 

I , 

HD 102163 32 65 73 a4 15 
H D  191765 35 62 69 15 15 
H D  193077 29 51 59 74 13 
H D  193576 29 48 60 62 14 
H D  492103 33 64 63 - 12 
IID 192641 - 59 55 - 7 

20,000°. Another reason for the differences between the temperatures found from 
different atomic lines can be a deviation of the energy distribution in the stellar 
spectrum from Planck's law. It must also be noted that Eq. (22.29) is not com
pletely applicable for determining the temperatures of WR stars because of the 
great complexity of the radiation processes of their envelopes in comparison with 
the radiation processes of gaseous nebulae. 

Spectrophotometric temperature values for WR s ta rs  a re  listed in the last 
column of Table 45. We see that they a re  much lower than the temperatures found 
by Zanstra's method. This is explained by the fact that in the envelopes of WR 
stars,  as a result of the conversion of high-frequency radiation, not only a re  the 
emission lines transformed but also the continuous spectrum, the energy distribu
tion in which corresponds to a very low temperature. In the case of WB stars, 
however, the continuous spectrum is transformed in a more complex manner than 
in the case of Be stars. This is caused by the large extent of the envelopes of WR 
stars, because of which they play the role of "atmosphere" as well as "photos
phere". The continuous spectrum of WR stars can be explained on the basis of 
the special theory of extended photospheres, which was discussed in Section 7. 

____~6 .  Late class s tars  with bright lines. In addition to the WRY P Cygni and 
Be type s tas  considered above, emission lines a re  also observed in the spectra 
of stars of the late classes. Among these a re  the long-period variables, Z An
dromedae type stars, etc. 

The variation in brightness and spectrum of long-period variables occurs 
with periods of about a year. The amplitudes of the brightness variation amount 

/392 
to several stellar ma.gnitudes. Near the time of maximum brightness, bright 
lines of hydrogen and ionized iron a re  seen in the spectrum, near the time of 
minimum brightness-bright lines of neutral iron. Most of the long-period vari
ables belong to spectral class M; approximately 80% of these have bright lines in 
the spectra. 

As observations indicate, the bright lines in the spectra of long-period var
iables form in deeper layers of the atmosphere than the absorption lines and bands. 
This follows from the fact that the line emission of hydrogen is partially absorbed 
in the stellar atmosphere. Some Balmer lines are decomposed into a ser ies  of 
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components which is caused by the absorption of radiation in these lines by metal 
atoms. An unusual intensity distribution among the Balmer series members is 
observed in the spectra of Me stars, explainable by the absorption of hydrogen 
radiation in the titanium oxide bands. In the spectra of Ne and Se stars the ti
tanium oxide bands a re  absent and in them the Balmer decrement is normal. 

The different behavior of the radial velocity curves, determined from these 
lines, attests to the formation of emission and absorption lines in different layers 
of the atmosphere. It is found that the difference in the radial velocities from 
bright and dark lines is always negative. In addition, the K-term determined 
from the emission lines is negative and equal to about -15 km/sec, and the k-term 
determined from the absorption lines is close to zero. From these data it follows 
that the layer in which the bright lines are forming is moving toward the observer, 

The spectra of Z Andromedae type s tars  are combinations of the later class 
spectrum with absorption lines and the early class spectrum with emission lines 
belonging to atoms with high ionization potentials (for example, He II). The spec
tral brightnesses of these stars exhibit irregular variations. In addition to Z An
dromedae, the stars R Aquarii, V Sagittae, etc. belong in this group. 

The major problem arising in the interpretation of the spectra of the late 
class s tars  with bright lines consists of explaining the reasons for the appearance 
of bright lines in the spectra of such cool stars. As we know, emission lines ap
pear in the spectra of hot s ta rs  because of the conversion of high-frequency stel
lar  radiation in the extended envelopes. However, the high-frequency energy of 
late class stars is too low for the emission lines in their spectra to be formed in 
the same manner. 

To explain the spectra of Z Andromedae type s tars  the hypothesis was ad- /393
vanced that these a re  double s ta rs  composed of one hot star and one cold. Fur
thermore, brightness variation curves of the hypothetical components were de
duced from the observational data. It is possible that some of these s tars  a re  
actually double; however, as yet there is no definite confirmation of the double-
star hypothesis. This hypothesis is inapplicable to the long-period variables. 

Another hypothesis proposed for explaining the spectra of late class stars 
with bright lines considers them to be single hot s tars  having extended envelopes 
of great optical thickness in the continuous spectrum [3]. We have already seen 
above that in the cases of Be and WR type s ta rs  the temperatures found from the 
bright lines a re  appreciably higher than the spectrophotometric temperatures. 
With an increase in the optical thickness of the envelope, this temperature differ
ence should increase. If we assume that the optical thickness of the envelope is 
great (this will be the case when the density in the envelope decreases slowly 
with an increase in distance from the center of the star), then the following pro
cesses will occur in the envelope. The inner portions of the envelope will absorb 
nearly all the stellar radiation and convert it into low-frequency photons. The 
continuous late class spectrum forms here and emission lines, corresponding in 
intensity to the temperature of the s tar  itself, appear. In the outer portions of 
the envelope, which will be primarily under the influence of the low-temperature 
radiation of i ts  inner portions, unionized metal atoms and molecular compounds 
will exist. The late class absorption spectrum forms here. 
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According to the proposed hypothesis, Z Andromedae type s ta rs  a re  class 
0 stars, having envelopes with a slow decrease in density along the radius. How
ever, the optical thicknesses of these envelopes in the continuous spectrum are 
still not very great. Therefore we see "combination spectral! which are the super
position of two spectra: of the star and of the envelope. In this situation, roughly 
speaking, the violet end of the continuous spectrum belongs to the star, and the 
red-to the envelope. The brightness and spectral variations in these stars can be 
explained by a change in the rate of matter ejection from them. 

If the optical thickness of the envelope becomes very great, then no emis
sion lines will be observed. The llnormallfcold supergiants are possibly formed 
in this manner. As  is known, the mass and brightness of class M supergiants 
and class 0 and B stars are approximately the same. By itself this forces one to 
think that these stars differ only in envelope configuration. 

Finally, a third hypothesis views the cause of the appearance of bright lines 
in the spectra of certain types of cold s tars  as due to a shock wave. As indicated 
by V. G. Gorbatskiy [41, this hypothesis is very probable with respect to long-
period variables. With the passage of a shock wave through the atmosphere of a 
star, a heating of the gas occurs, leading to an increase in the ionization of the 
atoms. After passage of the shock wave the gas luminesces, i. e. , recombinations 
occur and then luminescence in the spectral lines. Therefore the movement of a 
shock wave in a stellar atmosphere appears a s  the movement of a luminous layer 
of gas. The change in the spectrum, occurring in this situation, is very similar 
to the change in the spectrum of a long-period variable. From the observed shift 
of the bright lines in the stellar spectrum, one can determine the velocity of the 
shock wave. This makes it possible to find the temperature in the layer of heated 
gas and the amount of energy emitted by it in the spectral lines. For long-period 
variables the calculated energy and that obtained from observations agree in order 
of magnitude. 

In addition to the s tars  considered above, exhibiting high luminosities, late 
class dwarf stars with emission lines have also been detected by observations. 
The most interesting of these a re  type T Tauri variable stars. These stars be
long to spectral classes G - M and have the bright lines of H, Ca  11, Fe 11, etc. 
Absorption lines are seen on the violet side of the bright lines. Judging from the 
profiles of the spectral lines, ejection of matter occurs from type T Tauri stars. 
Nearly all type T Tauri stars known to us  are in stellar clusters (so-called T
clusters), which serves as the basis for concluding these stars are young. 

V.A. Ambartsumyan [lo] directed his attention to a surprising feature of 
type T Tauri and related stars. This feature is that during the r ise  in stellar 
brightness an extremely strong continuous spectrum, superimposed on the normal 
continuous spectrum with absorption lines, also appears along with the appearance 
and intensification of the emission lines. The fact that the new continuous spec
trum weakens all the absorption lines and does not involve the appearance of new 
absorption lines indicates that i t  arises in the outermost layers of the stellar at
mosphere. The appearance of emission lines together with emission absorption 
in the continuous spectrum corroborate this. 
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In the case of UV Ceti stars the flare-up occurs in a period of several min
utes, with the stellar brightness increasing by several stellar magnitudes during 
this time. Such a rapid and intense increase in  the stellar brightness cannot be 
explained by a transfer of energy outward from the interior of the s t a r  by ther
mal conduction nor by radiation transfer. Therefore it must be assumed that the 
energy radiated during the flare-up of a type UV Ceti star is transferred from the 
inner layers of the star to the upper layers of the atmosphere by some s t i l h n 
known process. 

An examination of the emission of several stars with additional continuous 
spectrum emission led V. A. Ambartsumyan to conclude that in all these cases we 
are dealing with the ejection from the inner layers of the s ta r  of some portion of 
the material that is serving as the source of stellar energy. Apparently the in
trastellar matter ejected outwards undergoes a rapid disintegration here, similar 
to nuclear disintegration, with the release of some energy, which is then convert

/395 


ed into radiation. One can assume that during the disintegration of the intrastellar 
matter, atoms of various elements are also formed. This explains the presence, 
in stellar atmospheres, of technetium, deuterium and other atoms having a short 
lifetime. 

Type T Tauri s ta rs  are frequently associated with nebulae, resembling 
comet tails in outward appearance. These nebulae, usually called "cometaryt1, 
possess the characteristic that they are variable. However, the nebular bright
ness varies independently of the change in stellar brightness. In a number of 
cases the continuous spectrum of the nebula is considerably more intense in the 
blue and violet regions than the spectrum of the s ta r  associated with it. V. A. 
Ambartsumyan assumes that the continuous spectrum of cometary nebulae ar ises  
in  the same way as the additional continuous spectrum of type T Tauri stars, i.e., 
as the result of the outward ejection of intrastellar matter and its subsequent dis
integration. 

29. Novae 

1. Observational data. The discovery of each bright nova is an important 
event in astronomy and they are studied intensively by many observatories. There
fore the observational data on novae are extremely voluminous. Here  we will men
tion some of these data; the details, however, can be �ound in specific monographs 
(see [9] and [ll]). 

To begin with, attempts have been made to determine the nova brightness 
curve from observations. These curves are very different for different stars. In 
general, however, the rise in brightness is extremely rapid and i ts  decay is very 
slow, frequently accompanied by large fluctuations. The "flare-up" of a nova us
ually occurs in a period of a few days, and the lffading"-in a period of several 
years. Finally the star returns to a brightness not much different from what it 
had before flare-up. The brightness curve of a typical nova is shown in Fig. 37 /396 
as an example. 

At the moment of maximum brightness, novae are the brightest objects of 
the Galaxy (if supernovae are ignored). On the average their absolute magnitudes 
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Figure 37. 

ma t  maximum are equal to -7 . In i ts  "normal" state, i. e., before the outburst 
and many years after outburst, novae have absolute magnitudes of about +5" 
(with a fairly large dispersion). Consequently, the average amplitude of the 
brightness change of a nova amounts to 12". Some information on the most 
studied novae are listed in Table 46. 

TABLE 46. SOME CHARACTERISTICS O F  NOVAE 
- ~-7--Ams1i:1AbsOlute-
I-'merit ofDistance IDisplace-1 

Nova Aurigae 1891 
Nova Persei 1901 

I I 

Commas represent 

in l a b s o ~ p -I 
parsecs tion lines 
- - -. . ____ 

9- -5,3 800 -
11,9 
14,2 

-9.3 
-8,9 

430 
1470 

1250 
330 

nmm/sei 

f3 ,3  -8.4 480 800 

l i . 5  -7.3 500 64 
12,6 -5,5 230 i80 
13,2 -8.6 1350 	 600-17 -8,5 500 

~ - . . . ~. - . .  ~ __._

decima11 points. 

Vast changes occur in the spectra of novae along with the change in bright
ness. However, we do not know the complete spectroscopic history of any nova 
since we have no data on the spectra a t  the s ta r t  of the outburst and before it. 
The spectrum before outburst of Nova Aquilae 1918, indicating it belongs to an /397
early class (probably 0), was found on only one random spectrogram, obtained 
with an objective prism. The first spectrograms of novae are usually obtained 
not long before the moment of maximum brightness. They show that the spectra 
of novae a t  this time can belong to classes A or F. A characteristic feature of 
these spectra is the drastic shift of all lines toward the violet. Expressed in 
velocities, it usually amounts to a few hundred kilometers per  second. The line 
shifts of the pre-maximum spectrum of novae are listed in the last  column of 
Table 46. 

Immediately after the maximum brightness of the s ta r  is reached, broad 
emission bands appear in i ts  spectrum. They are approximately symmetrical 
with respect to the center frequency and are bordered by absorption lines on the 
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violet side. The absorption lines of the new spectrum (usually called principal) 
are shifted toward the violet by a greater amount than the lines of the pre-max
imum spectrum. Sometimes somewhat of a system of absorption lines with dif
ferent shifts is observed in the stellar spectrum. Initially the bright lines be
long to atoms with low ionization potentials (primarily hydrogen and ionized met
als), then the lines of high-ionization atoms appear (for example, He 11, N IV, 0 
V). In addition to these changes in the bright line spectrum, a gradual weakening
of the continuous spectrum and absorption lines occurs. 

Bright forbidden lines, characteristic of the spectra of gaseous nebulae (in
cluding the N

1 
and N2 %ebular" lines), a r e  observed in the nova spectrum some 

months after outburst. With the appearance of these lines the nova enters the 
''nebular stage" of its evolution, which lasts for many years. Gradually the neb
ular  spectrum disappears and the star returns to its initial brightness. At this 
time it has a class 0 spectum, sometimes with weak emission lines. 

A nebula, surrounding the star, is seen on photographs of a nova some years 
after outburst. This nebula expands with an enormous velocity and then is dissi
pated in space. The existence of such nebulae leaves no doubt that during the nova 
outburst the outer layers of the star are  detached from it. Below i t  will be shown 
that the changes in nova brightness and spectrum are  explained by the gradual ex
pansion of the detached envelope. 

The observational data that have been presented refer to a typical nova. 
However, some other s tars  undergo similar outbursts. Of these, repeating novae 

a re  the most closely related to 

TABLE 47. REPEATING NOVAE 

- - ~ -

Star 

1 ._ 

N Orionis
T Pvxidis 
u SC rpii

RS Opxiuchi
T oronae
N gagittae
N Sagittarrj 

1 
.~ 

1677. 1750. 1892 Gm- 1I* 
1893. 1902, 1920, 1941 6 -14 
1863, 19OG. 1935 9 ->I7 
1898, 1933 4 -12 
1866, 1946 2 -1l 
1913. 1956 7 -is 

I 19011, I9l9 
q -14 

the typical nova. Unlike typical 
novae, which have undergone an 
outburst only once in all the time 
of their observation, repeating 
novae suffer many outbursts. 
Approximately the same phe
nomena occur during an outburst 
of a repeating nova a s  during the 
outburst of a typical nova, but 
they a re  on a different scale. A 
list of all the repeating novae 
that a r e  known at  the present 
time is given in Table 47. 

The so-called novalike 
variables, in turn, are related 
to the repeating novae. In their 

change in brightness and spectrum they also resemble no;ae. '?he novalike var
iables differ, however, from repeating novae not only in the small scale of the 
phenomena characterizing nova outbursts, but they are also less distinct. Star 
clusters of the types U Gemini, Z Andomedae, etc. a r e  distinguished among the 
novalike variables. 

The external similarity between repeating and typical novae permits one to 
suppose that the typical novae also undergo many outbursts; however, the time 
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between outbursts exceeds the period of the observations. Such a supposition is 
corroborated by two statistical results. The f i rs t  of these, first found by B. V. 
Kukarkin and P. P. Parenago, interrelates the lengths of time between outbursts 
with the amplitudes of the brightness change for novalike variables and repeating 
novae. It is found that the greater the first of these quantities, the greater the 
second, on the average. Extrapolating this dependence to typical novae, the au
thors mentioned have found that in this case the time between outbursts should 
amount to several thousand years. 

The second of the statistical results cited above refers to calculations of 
the number of outbursts. Every year, 1-2 nova outbursts a r e  observed in the 
Galaxy. Since these s tars  are  found only in the immediate vicinity of the Sun, the 
total number of nova outbursts in the Galaxy apparently amounts to about 100 per 
year. During the entire lifetime of the Galaxy, estimated at l o l o  years, about 
10l2 outbursts should have occurred. But the total number of stars in the Galaxy 
is equal to about l o l l .  Consequently, each nova should have suffered an average 

of 10 outbursts. On the other hand, we know for certain that for 2.10  9 years the 
Sun has not suffered such a catastrophe since it would have led to the melting of 
the earth's crust, which, however, has not occurred in that length of time. One 
can assume that other stars, like the Sun, have not suffered outbursts in the same 
length of time. This increases the number of outbursts occurring at each of the 
remaining stars. What has been said forces one to conclude that there exists a 
special class of stars, each of which suffers many nova outbursts. 

2. Explanation of outburst. As  already stated, during a nova outburst the 
envelope is detached from it and it then expands at  a rapid rate. It is easy to 
show that the envelope expansion must lead to the observed changes in the bright
ness and spectrum of a nova. 

At the moment of outburst, let the envelope, which has an optical thickness 
much greater than unity in the continuous spectrum, be detached from the star. 
With the expansion of the envelope i ts  optical thickness will decrease. However, 
until it becomes of the order of unity, the envelope will serve not only as a re
versing layer but also as a photosphere. In such a case the envelope expansion 
behaves like a rise in stellar brightness. Because, however, of the approach to
ward the observer of the reversed portion of the envelope, the absorption lines 
will be shifted toward the violet end of the spctrum. Just such a spectrum is 
observed during the increase in nova brightness. 

At the moment maximum brightness is reached, the optical thickness of the 
envelope in the continuous spectrum becomes of the order of unity. At  this time 
radiation directly from the star begins to reach the outer portions of the envelope, 
and bright lines flare up in the envelope. The reason for the appearance of bright 
lines is the same as in the case of gaseous nebulae, i. e., fluorescence. More
over, bright lines can also arise as the result of collisions of the envelope with 
matter impinging on it, which is ejected from the star after detachment of the 
envelope. 

/399-
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Line emission reaches the observer not only from the portion of the enve
lope approaching him but also from the receding portion. It is not absorbed by 

the envelope because of the Doppler effect. The 
width of the bright lines is found therefore by the 
corresponding expansion velocity of the envelope. 
An absorption line, arising in the portion of the 
envelope approaching the observer and screeningDli 
star, is found on the violet side of the bright line. 

nvelop The scheme for the formation of the spectrallines /400 
-C in the expanding envelopes of novae is given in 

Fig. 38. 

/ After maximum brightness, with further ex
8 k i k 8

c-qj2i! 
pansion of the envelope its optical thickness at the 
spectral lines decreases. Because of this the dim-&fp?L components of the bright lines fade, and then dis
appear. At some stage the conditions required 

PO 	 for the appearance of forbidden lines, i. e. , the 
radiation density and the density of matter become 
sufficiently low, exist in the envelope. StartingFigure 38. with the appearance of the forbidden lines, the 
"nebular stage" lasts for quite a long time-until 

the brightness of the dispersing envelope (caused primarily by radiation in the 
emission lines) becomes less than the brightness of the star itself. The spectrum 
of the star, belonging now to type WR, shows that the ejection of matter from the 
star is still continuing. When the process is completed, the s ta r  assumes a class 
0 spectrum without emission lines. 

The explanation set  forth for the phenomena occurring during outburst well 
satisfies, in general aspects, the observations in all stages of nova evolution. 
However, E.R. Mustel' [13]considers that there is another point of view, with 
respect to the question of the detachment of the envelope from the star, besides 
the one that has been discussed. It consists of the fact that at  the instant the 
outburst begins, the entire star starts to expand and the envelope (small optical 
thickness in the continuous spectrum) is detached from the star only at  the mo
ment of maximum brightness, after which the star s tar ts  to contract. At the 
present time i t  is difficult to choose between these points of view. It should only 
be mentioned that at times far removed from the instant of maximum brightness 
there is practically no difference between them. 

On the basis of the explanation given for nova outbursts, simple methods 
can be given for determining their parallaxes. These methods are very import
ant since the trigonometric parallaxes of novae are totally unreliable because of 
their smallness. 

One method of determining nova parallax is based on a comparison of the 
absorption line shifts with the rate of increase of the brightness before maximum. 
From observations one can find the visual magnitudes m 

1
and m

2 
and temperatures 

T1 and T2 (from the spectral class) for two instants of time t1 and t2. Using the /401 
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known formula relating the absolute stellar magnitude M with its temperature T -401 
and radius R, 

29500M =--- 5 Ig R -0.08, (29.1)T 

and also the fact that the difference in the visual magnitudes of a star is equal to 
the difference in its absolute magnitudes, i. e. , m2 - m = M2 - MI, we obtain 
the following formula defining the ratio of the stellar radii at  times t1and t2: 

(29.2) 

On the other hand, for the difference in radi i  at  times tl and t2 we have 

(29.3) 

where v is the rate of expansion of the photosphere, determined from the shift of 
the absorption lines. Each of the quantities R1 and R2 is determined separately 
from Eqs. (29.2) and (29.3). This provides the possibility of finding, from Eq. 
(29. l), the absolute magnitude of the nova and then from a comparison of i t  with 
the visual magnitude, the parallax. 

Another method of determining the parallax of a nova is based on a measure
ment of the expansion rate of its envelope. This rate can be measured, on the one 
hand, from the width of the bright bands in the spectrum and expressed in kilom
eters  per second, and, on the other hand, from an observation of the expansion of 
the nebular envelope and expressed in an angular measure. This method is more 
precise than the previous one. The distances and absolute magnitudes at  maximum, 
presented in Table 46 for several novae, a r e  determined by this method. 

The parallax of Nova Persei 1901 was found in an interesting manner. The 
nebula observed around this s ta r  was expanding so rapidly that it was completely 
impossible to distinguish it from the envelope ejected during the outburst. There
fore it was assumed that Nova Persei  1901 burst within a dust nebula and created 
a luminous region around itself, expanding with the velocity of light. This assump
tion was confirmed by the fact that the nebular spectrum obtained one and one-half 
years after the outburst was the same as the stellar spectrum at the moment of 
maximum brightness. 

The parallax of Nova Persei 1901 was determined by the second of the meth
ods given above with consideration given to the fact that the "expansion" of the 
luminous region was  equal to the velocity of light, i. e. , 300,000 km/sec. Subse
quently a second nebula, expanding much more slowly than the first, was discov
ered around Nova Persei. This was the "genuine"envelope, detached from the 
s tar  during outburst. 
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3. First period of outburst. Going over to a more detailed interpretation /402
of the snectrum of a nova. let us first discuss the period from the start of the 
outbursi to the moment of maximum brightness. During this time the nova pos
sesses a continuous spectrum with absorption lines. From the line profiles one 
can attempt to answer certain questions relating to the outburst. To do this is 
obviously necessary to determine theoretically beforehand the profiles of the ab
sorption lines arising in the expanding atmosphere. The vast extent of the atmos
phere, i. e. , the slow radial decrease in density, must be taken into consideration. 

For simplicity we will assume that the outer portions of the s tar  comprise
the "photosphere" and "atmosphere", i. e. , let us adopt the Schwarzschild-Sch
uster model. The intensity of the radiation coming to an observer from the pho
tosphere at an angular distance 8 from the center of the disk, we will denote by
I($) (within the line limits this quantity can be considered to be independent of the 
frequency). The intensity of the radiation coming from the atmosphere at fre
quency vwithin a line at the same angular distance from the center of the disk we 
wil l  denote by Iv(t9). If only true line absorption is taken into account, then we 
will have 

1,-(6)=I (6)e-?"(*), (29.4) 

where -r (9)is the optical path length in the atmosphere.
V 

Let n(r)  be the density of absorbing atoms at  the distance r from the center 
of the star and k(v - vo) be the absorption coefficient calculated for one atom. In 

V(r) cos 9' instead of the centhe case given we must write the frequency vo + v o c  
ter frequency v0' where v(r)  is the rate of expansion of the atmosphere and 8' is 

the angle between the radiation direction and the radius vector. Therefore for 
the quantity T (9) we obtain 

V 

(29.5) 

where r0 is the photosphere radius. 

Let us assume, for example, that 

u = copst and n = ILO (y. (29.6) 

Then 

a 


sv( 0 )=Nro 5 k ( v  -YO -vo -
U 

cos 0' (29.7)
C 


r, 
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where the number of absorbing atoms in a 1cm2 cross section column above the /403
photosphere is denoted by N, i. e. , 

(29.8) 

In Eq. (29.7) let  us change from the integration variable r to a new integration 
variable 9' by means of the relation r0sin9 = r sinal. After doing this, we obtain 

N 0 

T~(a) =	-1k (v - vo- vo -U cos Ut)dQ'. (29.9)s in6  

In order to find the profile of an absorption line in the spectrum of the en
tire star, the radiant flux H

V 
must be determined. Using Eqs. (29.4) and (29.9), 

we find 

I 8- N 


H , = 2 n  j I ( 6 ) e  
s,n 

0 

k (v-v.--v~ $ cos 9,)d9' 

COS 6 sin 6 do. (29.10) 
0 

The radiant flux in the continuous spectrum near the line is.clearly equal to 

(29.11) 

The quantity rv = H u h ,  which also characterizes the line profile, can be deter

mined with the aid of Eqs. (29.10) and (29. 11). 

The absorption line profiles calculated from the formulas presented a re  
very similar to the line profiles in the spectra of novae. From a comparison of 
the theoretical and observed profiles one can determine the atmosphere expansion 
velocity v. 

After finding the quantity r we can also calculate the equivalent line width 
V Y  

W, for which Eq. (12.1) must be used. In the case given W depends not only on 
the number of absorbing atoms N, but also on the expansion velocity v. There
fore we obtain a family of flcurvesof growth", representing the dependence of W 
on N for different values of the parameter v. Curves of growth, constructed by 
M. A. Arakelyan with the aid of the formulas given for some values of the ratio of 
expansion velocity v to the average thermal velocity u of the atoms, a r e  given in 
Fig. 39 as an example. Here the absorption coefficient was calculated from Eq. 
(8.18) for a = 0.01. From the observed values of W and v one can determine, 
with the aid of the appropriate curve of growth, the number of absorbing atoms N. /404 
Such determinations allow one to draw conclusions about the chemical composition 
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Figure 39. 

of the atmosphere. It must be noted that in the case given the use of the usual 
curve of growth (found in Section 12 for stationary atmospheres) leads to large 
e r rors  in the chemical composition. 

From observations i t  is concluded that in the pre-maximum spectra of many 
novae a decrease occurred in the shift of the absorption lines with time. At first 
an attempt was made to explain this effect in terms of a slowing down of the en
velope because of stellar gravitation. In this case extremely large values were 
obtained for the masses of novae (of the order of hundreds and thousands of solar 
masses). Then, however, it was ascertained that nova masses a re  of the same 
order as the masses of other stars. Therefore the explanation given above had 
to be discarded. It is possible that in reality the decrease in the absorption line 
shift in nova spectra is not entirely caused by a change in the envelope velocity, 
but by a change in the effective level of the absorbing material in the envelope, 
in which the velocity depends on the distance from the center of the star. If the 
outer layers of the envelope a re  expanding with a greater velocity than the inner, 
then as  the outer layers disperse, the effective level of the absorbing material 
will approach the inner boundary and the absorption line shift will decrease. It 
should be noted that such behavior must always be taken into consideration in in
terpreting a change in the shifts of the absorption lines. 

The spectra of novae immediately after the moment of maximum brightness 
are extremely complex and their theoretical interpretation meets with great dif
ficulty. Apparently the ejection of matter from the star, beginning after detach- /405 
ment of the envelope from it, plays a large role in the formation of these spectra. 
This process leads to the formation of an extended atmosphere around the star, 
which absorbs the ultraviolet radiation of the s tar  and converts i t  into lower fre
quency photons. It must be taken into:account that the extended atmosphere pos
sesses, at this time, a fairly large optical thickness in the continuous spectrum 
since its absorption and emission spectra are characteristic of s tars  of the rela
tively late classes (so-called diffuse spark spectra). Judging from the shift of 
the absorption lines (or from the width of the emission lines), the outward veloc
ity of material from the star exceeds the velocity of the envelope. Therefore the 
ejected material overtakes the envelope and produces emission lines in it because 
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of collisions. Moreover, the ejected material, added to the envelope, increases 
its velocity (see Section 30 concerning this), so that the shift of the absorption 
lines increases, as noticed in observations. It should also be considered that af
ter  the detachment of the primary envelope from the star, in some cases addition
al envelopes are detached from the star. This can explain the appearance of sec
ondary maxima on the descending branch of the nova brightness curve and also 
the appearance of additional systems of absorption lines in its spectrum. 

As  time passes, the rate of matter ejection from the s tar  decreases and the 
extended atmosphere becomes transparent to the ultraviolet radiation of the star. 
Then the envelope shines primarily because of this radiation. At first, however, 
this emission occurs in a more complex fashion than in nebulae because of the 
opacity of the envelope to line radiation. Therefore in the case given the intensity 
of the emission lines must be calculated on the basis of the theory discussed in 
Section 28. Such calculations lead to theoretical and observed Balmer decrements 
that are  in agreement. 

It is interesting to note that a completely anomalous Balmer decrement has 
been observed in the spectra of some novae for some months after start  of the 
outburst. Thus, for example, in the spectrum of Nova Lacertae 1936 the H

CY 
line 

was 5-6 times brighter than the H P line, and in the spectrum of RS Ophiuchi 1933

10-12 times brighter. This phenomenon is explained by the fact that in the period
being considered the envelope was opaque to radiation in the Lyman and Balmer 
series lines and transparent to lines of the other series. The solution of Eqs. 
(28.18) for the case given leads to precisely these large values of the ratio of the 
intensities of the H and HP lines. A s  the envelope expands, i t  becomes transpar-

CY 

ent to radiation in the lines of all series, except Lyman, and the Balmer decre
ment in the nova spectrum is the same as  in the spectrum of a gaseous nebula. 

4. Nebular phase. With the appearance of forbidden lines in the spectrum /406-
of a nova, the nebular phase of its evolution begins. From this time the conditions 
in the envelope become similar to the conditions in gaseous nebulae and, therefore, 
the envelope can be investigated by the methods discussed in Chapter V. In partic
ular, nova temperatures (which turn out to be very high-about 50, OOOO)  can be de
termined by the Zanstra methods. From the envelope emission in the lines of var
ious atoms one can find the concentration of these atoms in the envelope, its elec
tron temperature, mass, etc. We will not discuss all of these questions here, but 
will consider only some of them. 

As  established in Section 25, in order for forbidden lines to appear in the 
spectrum of any object i t  is necessary for the radiation density and the density of 
matter in them to be quite low. One can show that in the envelopes of nova the 
first of these conditions (regarding the radiation density) s tar ts  to be satisfied 
sooner than the second. Consequently, forbidden lines appear in the spectrum of 
a nova at a density of matter in the envelope when the number of spontaneous trans
itions in these lines becomes comparable to the number of collisions of the second 
kind. In other words, at  this time the condition 

(29.12)  
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is satisfied, where AZl is the Einstein spontaneous transition coefficient in the 

forbidden line, ne is the density of free electrons in the envelope, oZ1is the ef

fective cross  section for collisions of the second kind, v is the average velocity 
of a f ree  electron. 

If the quantities Azl and o2 1  
are known for a given forbidden line, then, us

ing Eq. (29.12), one can find the free electron density n in the envelope for that e 
moment when this line appears in the nova spectrum (before this moment the quan
tity ne is larger  than the value determined from Eq. (29.12), and after-smaller). 

On the other hand, the envelope volume V for  this same moment can be calculated 
from the envelope expansion velocity and from the time interval elapsed since the 
start of the outburst. This gives the possibility of determining the envelope mass 
from the formula 

M = mHVk (29.13) 

(since the number of free electrons is equal to the number of protons, and the hy
drogen in the envelope is predominantly in the ionized state). 

The mass  of the nova envelope can also be found by the same method used 
for  determining the masses of gas nebulae. This method is based on using the 
hydrogen line emission of the envelope, arising, as we know, as a result of photo
ioni tions and subsequent recombinations. In Section 24 the following formula /407 
for b-.2 envelope mass  was derived by using the theoretical expressions for the in
tensities of the Balmer lines: 

where L is the luminosity of the envelope in the visible portion of the spectrum and 
C is some constant. 

The use of these methods for determining the envelope masses of novae leads 

to values of about 1028-10 29 g. In other words, during each outburst a nova ejects 
a mass  of about 10-5-10-4 solar mass. 

In the nebular stage of a nova i t  is also easy to determine the electron tem
perature of the envelope. The simplest wayoto do this is to use the observed ratio 
of the intensities of the N1 + Nz and A 4363 A lines, belonging to doubly ionized 

oxygen. The forbidden lines in nova spectra are excited by electron collision and 
their intensities depend on the electron temperature T and the electron densitye 
ne' When, however, the envelope density is so low that spontaneous transitions 

occur much more frequently than collisions of the second kind, the ratio of the in
tensities of these lines depends only on T and, as is shown in Section 25, is dee 
termined by Eq. (25.22). In nova spectra, as in the spectra of gaseous nebulae, 
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the N1 and N2 lines are usually much brighter than the h 4363 A line (by about a 
factor of 100). Therefore values of about 10,000" are obtained for the electron 
temperatures of envelopes. 

It should, however, be noted that at the start of the nebular stage the N1 and 
N2 lines a re  weaker than the h 4363 A line. This is explained by the fact that at 
the time of appearance of forbidden lines in the nova spectrum, the role of collis
ions of the second kind is still important. Let us assume, for example, that col
lisions of the second kind predominate over spontaneous transitions. Then the 
populations of the atomic energy levels are determined by Boltzmann's formula 
and the ratio of the intensities of the lines being considered is given by Eq. (25.24). 
From this formula it is seen that the N1 and N2 lines will actually be weaker than 

the h 4363 line only if the envelope temperature is very low. 

Interesting information on the envelopes of novae can be obtained through a 
study of the profiles of the emission lines in their spectra. In the nebular stage 
the envelope is transparent to line radiation so  that analysis of the line profiles 
is significantly simplified. Since the expansion velocities of envelopes a re  much 
greater than the average thermal velocity of the atoms, the profiles of the emis
sion lines a re  determined primarily by the motion of the envelope. As shown in 
Section 28, when the envelope possesses spherical symmetry and all its layers a re  /408
moving with the same velocity, the emission line profiIe is rectangular. Such line 
profiles are actually observed for a number of novae, which indicates their enve
lopes a re  approximately spherical. Usually, however, the emission lines in nova 
spectra have a very complex structure. In particular, in some cases (for example, 
in the spectrum of Nova Herculis 1934) the emission lines would be split, i. e., be 
saddle-shaped. As we already known, such profiles cannot be explained by a ve
locity dispersion in a spherically symmetrical envelope. Therefore one must con
clude that the envelopes of some novae do not possess spherical symmetry, i. e. , 
the ejection of material from the star occurs with different intensities in different 
directions. 

This conclusion is confirmed by photographs of nova envelopes in which in
dividual blobs of material a r e  visible in the envelopes. Such blobs were first  ob
served in the envelope of Nova Pictoris 1925 (on the basis of this the subsequently 
unjustified hypothesis was made concerning the formation of multiple stars during 
nova outbursts). Two bright blobs were also observed in the envelope of Nova Her
culis 1934. The splitting of emission lines in the nova spectrum is explained by 
the movement of these blobs with different radial velocities. 

To interpret the deviations of nova envelopes from sphericity, E. R. Mustel' 
set forth an assumption concerning the strong magnetic fields of these stars. If 
for example it is assumed that the field is dipole in nature, then the ionized gas 
ejected from the s ta r  will undergo minimum deceleration in the polar directions 
where the gas is moving approximately parallel with the lines of force. There
fore the amount of ejected matter wil l  be a maximum in the polar direction. 

One can also conclude that the deviation of nova envelopes from sphericity 
is caused by the entry of these stars into intimate binary systems. Nova Herculis 
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1934 is a component of such a system. Several other cases of nova doubling have 
been discovered recently. 

5. Herculis nova of 1934. One of the most interesting and thoroughly stud
ied novae is Nova Herculis 1934. It must be classed as a "special" nova since it 
is markedly different from most novae in terms of the variations in its brightness 
and spectrum. 

The light curve of Nova Herculis 1934 is depicted in Fig. 40. The brightness 
mof the star, increasing initially from 14-15 to lm.3 (22 decades), then slowly de

creased over a period of three months. At this time the spectrum of the star be

longed to class F with the emission lines of H, Fe 11, Ca 11, etc. In April 1935 


the nova brightness rapidly fell to 13". 1and then increased by approximately 7m, 

after which it again began to decrease slowly. After the April minimum the nova /409

spectrum became typical of gaseous nebulae. The increase in the intensities of 

the lines of this spectrum caused an increase in the nova brightness by seven stel

lar magnitudes. 


The explanation of the brightness and spectral changes of Nova Herculis 1934, 
given by Grotrian, consists in the following. During the first  three months after 
s tar t  of the outburst, a great deal of matter was  ejected from the star, leading to 
the formation of a very extended atmosphere around it. However, the outermost 
portions of the envelope did not shine a t  this time since the ultraviolet radiation 
of the star was not reaching them. This radiation was absorbed very near the star 
in envelope layers which converted it into lower frequency radiation in the contin
uous spectrum, i. e . ,  played the role of an extended photosphere. In April the 
amount of material being ejected from the s tar  decreased suddenly, the extended 
photosphere dispersed and the brightness of the nova in the visible portion of the 
spectrum fell drastically. This exposed a very hot s tar  (with a temperature of 
about 70,000"); the ultraviolet radiation of this star then caused the outermost 
rarefied portions of the envelope to shine, similarly to the shining of gaseous neb
ulae, so  that the brightness of the nova in the visible portion of the spectrum be
gan to increase again. This process of increasing nova brightness continued as 
long as  the intensity of the emission lines of the envelope spectrum did not equal 
that of the ultraviolet radiation of the star. The subsequent slow decrease in nova 
brightness is associated with the gradual dispersion of the nebular envelope. 

An examination of the radiation of the Nova Herculis envelope after the April 
brightness minimum is of great interest. The point is that in theoretical astro
physics an assumption is usually made concerning the existence of radiative equi
librium in stellar envelopes. Even in  those cases when a very rapid change occurs /410
in the physical conditions in envelopes, it is nevertheless assumed that radiative 
equilibrium tends to be established. In other words, envelope evolution is thought 
of as a sequence of equilibrium states. In some cases, however, envelopes ra
diate in the absence of radiative equilibrium. One of the most clear cut examples 
of such emission is the envelope of Nova Herculis after the brightness minimum 
in April. We have already seen that although the ultraviolet quanta of the s ta r  
were reaching the nebular envelope at the time of minimum brightness, it still 
was not shining. Radiative equilibrium was clearly absent at this time. Subse
quently the envelope evolved in the direction of establishing radiative equilibrium. 
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Figure 40. 

This process can be considered completed only at  the moment of the second bright
ness maximum. 

Let us consider a theoretical interpretation of the emission of the Nova Her
culis envelope after the April brightness minimum. For simplicity let us consid
er a hydrogen envelope of constant density. Let us assume that the envelope is 
spherically symmetrical, with its thickness being considerably less than its dis
tance from the star (r2 - r1<< r1). 

Let n (r, t) and n+(r, t) be the number of neutral and ionized atoms, respec-
I 3tively, in 1em at a distance r from the star at  time t, and n be the number of hy

3drogen atoms in 1em , so that 

At the initial instant of time, which we take as the time of the sudden temperature 
increase of the star, all envelope atoms are  un-ionized, i. e. , n1(r, 0) = n and 
n+(r, 0) 0. 

Then ionization of the atoms occurs through the absorption of photons emitted 
by the star beyond the Lyman ser ies  limit. The number of these photons, incident 
on 1em 2 of the inner boundary of the envelope per second, we will denote by H. 
If the absorption coefficient, calculated for one atom, is denoted by k, then the 

n
d
total number of ionizations occurring per second in 1 em at a distance r from the 

star at time t will be equal to 

where 7(r, t) is the optical distance of a given point from the inner edge of the en
velope, i. e. , 

(29 .16)  
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In addition to the ionizations, reverse processes, i. e. , recombinations, al
s o  occur in the envelope. The number of recombinations at the i-th level, occur

ring per second in 1om3 at a distance r from the star at time t, is equal to /411 

where ne(r, t) is the number of free elctrons in 1cm3. 

At each point of the envelope the change in the number of ions is equal to the 
difference between the number of ionizations and the number of recombinations. 
Therefore we have 

(29.17) 

Recombinations at the first level and ionization due to the effect of the diffuse radi
ation of the envelope are ignored in Eq. (29.17) since these processes compensate 
each other. 

Thus, the problem of determining the change in the number of ionized atoms 
in the envelope reduces to solving Eq. (29.17) for the conditions (29.15) and (29.16). 
We will not discuss the detailed solution of this equation here  (see [131), and we 
will give only some of the results. 

Let the optical thickness of the envelope beyond the Lyman series limit at 
the initial instant of time be much greater than unity, i. e. , -r(r2, 0) >> 1. Further, 

let the stellar radiation be so  intense that i t  is able to create a degree of ioniza
tion in the envelope considerably in excess of unity (n+/nl >> 1). In this case for 
each instant of time the envelope can be divided into two regions: "ionizedll (n+ >> 
>> n1) and 17un-ionized'1(n+ << n1) with a very sharp boundary between them, and 

the gradual increase in ionization in the envelope can be considered as a move
ment of the boundary between these regions. This boundary occurs approximately 
a t  the point where -r M 1for a given instant of time. Such a result is completely 
understandable since as long as -r >> 1for the layer being considered, the ionizing 
radiation of the star does not reach it. Ionization begins in a layer only when i ts  
optical thickness becomes of the order of unity because of the ionization of the en
velope portion nearest  the star, 

This result  makes it possible to easily find how the total number of ionized 
atoms in the envelope varies with time, i. e. , the quantity 

N+ = n+ciV. (29.18) 

Let us  integrate both sides of Eq. (29.17) over the entire envelope volume. De
noting the total number of photons, emitted by the s t a r  beyond the Lyman series 
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limit in 1 sec, by 8,we obtain 

(29.19) 

The last term in this equation is written on the basis of the relation 

which follows from the fact that in the ionized region ne e n, and in the un-ionized 
region n 0. e 

The solution of Eq. (29.19), satisfying the initial condition w(0)= 0, has 
the form 

(29.21) 

where 

W 

t.n cc,= 1. (29.22) 
2 


The quantity t*, defined by Eq. (29.22), can be considered as the time to 
establish equilibrium. As is seen, it is greater, the lower the density of matter 
in the envelope. 

m

To evaluate the quantity t*, we note that for hydrogen .ZC R 3- (for

2 i  
Te = 10,OOOo). This means that when n l o l o  cmw3the quantity t* is of the or
der of several minutes. In nova envelopes n > l o l o  cm-3 in the initial period 
after maximum brightness. Therefore one can assume that in the given case the 
establishment of radiative equilibrium results directly from a change in the phy
sical conditions in the envelope. In the case of Nova Herculis 1934, however, the 
stellar temperature increased suddenly when the density of matter in the envelope 
was already extremely low. It is for this reason, therefore, that the establish
ment of radiative equilibrium in the envelope of Nova Herculis was delayed by 
months. 

With the aid of the formulas derived, one can find the change with time of 
the total amount of energy radiated by the envelope in any Balmer line. A s  we 
know, the amount of energy Ek2 radiated by the envelope in the k -2 transition 

is given by Eq. (28.30). Using Eqs. (29.20) and (29.21) instead of (28.30), we 
find 

(29.23) 
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Values of the quantity Ek2 for several of the Balmer lines were determined from 

observations of Nova Herculis. These values vary with time approximately the 
as the star brightness (which is completely understandable since the increase in 
brightness is also caused primarily by an increase in the energy emitted in the 
lines). The observed variation of the Ek2 values is well represented by Eq. 

(29.23). Here  a value of n = 3 .106 cm-3 must be assumed for the atom density 
in the envelope. 

The change in the emission line profiles in the Nova Herculis spectrum after 
the April brightness minimum is also of interest. As already stated, the emission 
lines in the spectrum.of this nova were split, which is caused by the presence of 
two blobs of matter, having different radial velocities, in the envelope. Observa
tions have shown that at the time of appearance of the emission lines their red 
components were much weaker than the violet components and both components 
were of comparable intensity only at the .timeof the second brightness maximum. 
This behavior of the emission lines seemed puzzling a t  first and some hypotheses 
were made to explain it. It can, however, be easily explained on the basis of the 
discussed concept of envelope emission in the absence of radiative equilibrium 
(more precisely, with the aid of Eq. (29.23)). From observations it is seen that 
the intensity of the violet component increased more rapidly than the intensity of 
the red component. This means that radiative equilibrium was established more 
quickly in the blob of matter approaching us than in the blob receding from us. As 
already pointed out, this is the situation when the density of matter is different in 
the blobs (less-in the one approaching us  and greater-in the one receding from 
us). The value, given above, of the density of atoms in the envelope is some av
erage value for both blobs. 

Knowing the atom density n and the envelope volume V provides the possi
bility of determining the envelope mass from Eq. (29.13). Such a mass determin
ation method is, however, associated with some uncertainty because of possible 
e r rors  in calculating the envelope volume. In order to avoid determining the vol
ume, one can proceed in the following manner. Let u s  multiply both sides of Eq. 
(29.22) by n+ and integrate over the entire envelope volume. As a result we ob
tain 

(29.24) 

where we have replaced n by n since the integration, in essence, is done only in e 
the ionized region and there ne M n+ xn. But the integral on the right side of this 

equation is the total number of hydrogen ions in the envelope, and the integral on 
the left side is the total number of recombinations at all levels, starting with the 
second. The latter number, however, is equal to the number of Balmer photons 
emitted by the envelope in 1 sec. Consequently, we have 

/413 

/414 
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Equation (29.25) allows one to determine the quantity N+ for any instant of time 
t from observed values of the quantities t* and NBa. Applying this formula to 
the time of the second brightness maximum, we obtain the total number of hydro
gen atoms in the envelope (if it is assumed that n+ >> n1 throughout the entire en

velope a t  this instant of time). With the aid of Eq. (29.25) it was found that in 
the Nova Herculis envelope the total number of hydrogen atoms is equal to 

281.4* and this means its mass is equal to 2.3- 10 g. 

Equation (29.23) determines not only the change with time of the hydrogen 
line intensities, but also the intensities of the lines of other atoms, arising as 
the result of photoionizations and recombinations. The forbidden lines, whose 
radiation is excited by electron collisions, behave somewhat differently since the 
intensities of these lines depend strongly on the electron temperature of the en
velope. As we have seen in Section 23, the electron temperature level is deter
mined primarily by the energy acquired by the free electrons through photoioni
zations and by energy lost by them through collisions. Since collisions occur in
frequently for a low density of matter in the envelope, the establishment of an 
equilibrium temperature can extend over a long period of time. The problem of 
the change of electron temperature of the envelope with time has been examined 
by I. N. Minin 1141. The solution obtained has made i t  possible to interpret the 
behavior of the forbidden lines in the Nova Herculis spectrum during the time 
when radiation equilibrium did not exist in the envelope. 

6. Novae g a n y  years  after outburst. The envelope of a nova disperses to 
a considerable extent over a period of some decades after outburst and the bright
ness of the star approaches the value i t  had before the outburst. A study of the 
s t a r  during this period (possible only with the aid of the largest  telescopes) has 
led to very interesting results. The discovery of the duality of some novae, 
making i t  possible to determine their masses,  is especially important, 

Duality was f i r s t  discovered in Nova Herculis 1934 (Waker in 1954). Ob
servations indicated that the s ta r  is an eclipsing variable with a period of 4 hours 
39 minutes. At the primary brightness minimum the cold s ta r  eclipses the hot 
star (which, apparently, also flares up in the form of a nova). A lack of know
ledge about the cold star prevents a precise determination of the masses of the 
components; in all probability, the mass of the hot s ta r  amounts to about 0.25 
solar mass. 

Emission lines, arising partly in the very tenuous envelope that was ejected /415 
in  the 1934 outburst and partly in the denser envelope surrounding the s tar ,  are 
observed in the Nova Herculis spectrum in the period under consideration. The 
spectrum of the latter envelope changes significantly together with the eclipse 
phase. A study of the variations of this spectrum, undertaken by Kraft  [15], 
showed that this envelope can be represented in the form of a "disk", rotating 
about the hot s ta r  with a velocity of about 500 h / s e c .  Apparently, this "disk" 
is formed .as a result of the ejection of matter from the cold star. From the en
ergy distribution in  the continuous spectrum it was found tliat the temperature 
of the hot star is about 80,000". The stellar radius, determined on the basis of 
the temperature and luminosity, is close to the radii of white dwarfs. A sur
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prising feature of the hot s ta r  i s  the fact that it undergoes small brightness fluc
tuations with a very well-defined period equal to about 7 1  seconds. 

Besides Nova Herculis 1934, there are many other s tars ,  which have flash
ed in the form of novae, that are in binary systems (in particular, Nova Persei 
1901, Nova Aurgae 1891, Nova Aquilae 1918). The binary condition was found to 
be an extremely common phenomenon among the novae that have been examined 
lately. On this basis Kraft even put forth the hypothesis that the entry of a star 
into a binary system is a necessary condition for an outburst. 

One can assume that novae exist in their normal states many years  after 
outburst. Since data on the spectra and luminosities of stars in these states are 
available to us, one can pose a question about their location on the spectrum-
luminosity diagram. This same question is of interest with respect to the repeat
ing novae and novalike variables. B. A. Vorontsov-Vel'yaminov (see [9]) studied 
this problem f i r s t  and concluded that a special sequence of s tars ,  called blue-
white by him, existed on the spectrum-luminosity diagram. This sequence s tar ts  
from the class 0 stars, runs through the Wolf-Rayet type stars, novalike vari
ables, repeating and ordinary novae and ends with the blue and white dwarfs. 

B. A. Vorontsov-Vel'yaminov advanced the hypothesis that the blue-white 
sequence has an evolutionary significance: the most. massive s tars ,  losing mass, 
move along the sequence as they evolve, finzlly changing into white dwarfs .  The 
loss of mass initially occurs in the form of a continuous ejection, and then as 
outbursts, with the intervals between them gradually increasing. The fact that 
the stellar masses  do in fact decrease along the sequence (the masses of class 0 /416 
stars amount to about 40 M a ,  the masses of WR type stars-about 10 M,, the 
masses  of white dwarfs-of the order of M Q  and less) favors this hypothesis. The 
objection that the spatial and kinematic characteristics of the various s ta r  types, 
entering into the sequence, are different was  raised against this hypothesis. 
These characteristics cannot change significantly during the relatively short 

"lifetime" of the objects under consideration (about 105-106 years for WR stars 
and about 107 -10 8 years for novae) as  they evolve along the sequence. Not ex
cluded, however, is the fact that an evolutionary relationship does exists be
tween the individual members of the blue-white sequence. 

In conclusion, let us  emphasize that stars, differing drastically from other 
stars, are subject to outbursts in the form of novae. For example, stars such 
as the Sun cannot flare up. 

30. Motion and Luminosity of Envelopes 

1. Energy released during outburst. In the previous section we were  con
cerned primarily with interpreting the variations in nova spectra caused by the 
receding of the ejected envelope from the star.  Now we will consider the prob
lems associated with the ejection of the matter and with the energy released dur
ing the outburst. 
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Let us f i rs t  find the total energy released during a nova outburst. This en
ergy is composed of three parts: 1)radiative, 2) kinetic energy of the envelope 
and 3) the energy to separate the envelope from the star. 

The radiative energy is determined from the formula 

(30.1) 

where L(t) is the nova luminosity, and the integration extends over the entire 
outburst period. The integral of (30.1) can be calculated for each nova with the 

aid of the light curve. It turns out that Erad M 1 0 ~ ~ - 1 0 ~ ~ergs. 

The kinetic energy is equal to 

(30.2) 

Assuming a value of about 1028-1029 g for the mass M of the envelope and a val
ue of about 1000 km/sec for its velocity v, we find that EEn ~ o ~ ~ - I o ~ ~ergs. 

To calculate the energy to separate the envelope from the s ta r  the formula 	 /417 

E 
SeP 

=G-, M.M 
(30.3)r .  

must be used, where G is the gravitational constant, M, is the stellar mass and 
r* is its radius. Assuming that M, e and r* 0 .1  ro , we find E

SeP 
M 

fi: ~ o ~ ~ - I o ~ ~ergs. 

Thus, an extremely large amount of energy (of the order of 1045-1046 
ergs)

is released during a nova outburst. For comparison, one can note that the Sun 
6radiates the same amount of energy in a period of 105-10 years. 

The sources of the energy, released during a nova outburst, are  a very im
portant question. To answer this question we will determine the physical condi
tions in the layer where the envelope is tearing away from the star. We will  as
sume the envelope mass M is known. Assuming that the envelope is composed 
primarily of hydrogen, we have 

(30.4) 

where r* is the radius of the separation layer and n is the hydrogen atom density 
in the envelope. 
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To compute the integral of (30.4) we need to know the dependence of n on r. 
This dependence is given in photosphere theory (see Section 4). Since the temper
ature in the envelope is very high, let us take the expression 

(30.5) 

for the volume absorption coefficient, where C is some constant (of the order of 
In this case, from Eqs. (4.51) and (4.52) it follows that 

(30.6) 

and 

(30.7) 

where n.+ and T, a r e  the values of n and T in the separation layer, g is the grav
itational acceleration at  the surface of the star,  k is Boltzmann's constant. Sub
stituting (30.6) into (30.4) and using (30. 7), we obtain 

kM =Snr.2-n.T.. (30.8)
g 

Equation (30.8) gives one relationship between the desired quantities % and 
T,. To find another relationship between them, we can made use of the relation /418 

(30.9) 

where T0 is the surface temperature of the star and 7, is the optical depth of the 
separation layer, i. e. , 

(30.10) 

Substituting Eq. (30.5) into (30.10) and taking (30.6) and (30.7) into account, we 
have 

17 Ck n,2
T. =--

8m& T .'I; (30.11) 

Equations (30.8), (30.9) and (30.11) allow one to determine the quantities 
%, T, and T*. Assuming that To = 50,000", r* = l o l o  cm, g = 107 cm/sec 2, 
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M = g (these values must be considered to be the most probable), we find 

rJ5.1022 g/cm 3 , T, W 5 - 1 06 deg, r* e l 08. 
One source of the nova emission is the energy contained in the envelope at 

the start  of the outburst. This energy is thermal, radiative and ionizational in 
nature. As the envelope expands, the energy contained in it escapes in the form 
of radiation, i,e. , the envelope luminesces. 

The amount of thermal energy in the envelope is given by the formula 

T. 


Ether 
=4nr.22 

2 
Ii.2 

0 
5 nT (- T)(ET, (30.12)dT 

where 2n is the total number of particles (protons and free electrons) in 1 cm3 . 
With the aid of Eqs. (30.6)-(30.8) we obtain 

-
Ether -7 

17kT. -.M (30.13)m, 

Assuming that T, fi: 5.10 6 deg and M M 1028-1029 g, we obtain Ether 
w 1 0 ~ ~ - 1 0 ~ ~  

ergs. 

The amount of radiative energy in the envelope is equal to 

T. 

dr 

Erad 
= 4rrr.2~$ 74( - - ) d T ,  (30. 14)

0 dT 

or, with (30.7)  taken into account, 

17 kaT.s
Erad =4nr.* -~.10 FI?Z;’  

(30.15) 

Assuming the values given above for the quantities r*, T, g, we obtain Erad fi: /419 
M ergs, Consequently the amount of radiative energy in the envelope is con
siderably less than the amount of thermal energy. 

The amount of ionizational energy in the envelope (converting into radiation 
when the degree of ionization decreases) is also small in comparison with the 
amount of thermal energy. This follows from the fact that for temperatures of 
the order of a million degrees the ionization energy of the most prevalent ele
ments (hydrogen and helium) is small compared with kT. 

Thus, the internal energy of the envelope (predominantly in the form of 
thermal energy, as explained) is about 1043-10 44 ergs. This energy is radiated 
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as the'envelope expands. It amounts, however, to only a small fraction of the 
total energy emitted during a nova outburst. As we will see later, the internal 
energy of the envelope plays some role in its luminosity only in  the first stage of 
the outburst. 

Another source of the nova luminosity is the emission of the star after the 
envelope is separated from it. Since the temperature of the separation layer is 
very high, the stellar luminosity immediately after envelope separation should 
be very high. This brightness, however, does not correspond to the energy being 
generated within the star, and therefore the stellar temperature should decrease 
gradually. This process is complicated by the continuous ejection of matter from 
the star. An estimate of .the energy radiated by the star after the envelope sep
aration is very difficult to arr ive at; however, undoubtedly the envelope shines for 
some time after the start of the outburst because of this very energy. 

Finally, additional energy released during the outburst, i. e. , the explosion 
energy, can serve as a source of nova radiation. The separation of the envelope 
from the star and its subsequent expansion occur because of this energy. As  we 

have seen, an energy equal to 1 0 ~ ~ - 1 0 ~ ~ergs  is expended in this. If an equal 
portion of the explosion energy changes into radiation, then i t  can play a signifi
cant role in the nova luminosity. 

2. Interpretation of light curve. Knowing the sources of the nova luminosity 
and the rule for envelope expansion allows one, in principle, to determine the var
iation of the envelope brightness with time, i. e. , to construct a theoretical nova 
light curve. Here,  the intrinsic difference in the envelope radiation mechanisms 
before and after the instant of maximum brightness must be kept in mind. While 
the light is increasing, the envelope brightness is caused by continuous spectrum 
radiation, i. e. , the envelope is the photosphere. At maximum brightness the op
tical thickness of the envelope in the continuous spectrum becomes of the order of 
unity and bright lines appear in the nova spectrum. The relative role of the bright 
lines in the envelope emission increases and, after some time, it predominates. /420 

Let us  now discuss the period from s ta r t  of the outburst to the moment of 
maximum brightness (see [161) for  more details). In this interval the physical 
conditions in the envelope are changing very rapidly with time. In particular, 

8the optical thickness of the envelope decreases from a value of about 10 to a 
value of the order of unity. Therefore a very difficult radiation transfer problem 
in a medium with changing optical properties has to be solved to determine the 
change of envelope brightness with time. Strictly speaking, these properties are 
not even defined and, in  turn, depend on the radiation field; however, we will  ig
nore this fact. 

The problem facing us  can be formulated thus. Let the envelope radiate 
both because of the energy present in it a t  the s ta r t  of the outburst, and also be
cause of the stellar radiation after envelope separation. Let us denote the init
ial envelope energy by E, and the stellar luminosity by L,(t), where t is the time, 
measured from start of the outburst. Let r(t)be the envelope radius and T0(t)
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its optical thickness. All the quantities mentioned are assumed to be specified. 
The envelope luminosity L(t) is to be determined. 

To simplify the problem we will assume that the envelope thickness is small 
compared with its radius, and we will ignore the residence time of radiation in 
the envelope itself compared with its residence time in the void created by the en
velope. In other words, we will replace the radiation diffusion process in the en
velope by a photon transfer mechanism in this void after their nearly instantan
eous reflection from the envelope. Under the assumption of the existence of ra
diative equilibrium in the envelope itself, the probability of reflection of a photon 
from it is equal to T0(t) /[ l  + T0(t)], and the probability of transmission of a pho

ton through the envelope is equal to l / [ l  + ~ ~ ( t ) ] .At the start of the outburst the 
quantity 70(t)is very large so that each photon, before its passage through the 
envelope, undergoes an enormous number of transits in the void. The quantity 
T0(t)decreases with time, the escape process of photons from the void outward 

is accelerated and the envelope brightness increases. 

The change, with time, of the amount of energy in the void created by the 
envelope must be considered in determining the envelope luminosity L(t). The 
amount of energy in the void increases because of the stellar radiation, and de
creases because of the escape of radiation outward from the envelope. On the 
basis of the energy conservation law, we obtain /42 1 

(30.16) 

where p(t) is the radiation density in the void (obviously independent of location). 

The radiation density p(t) can easily be related to the envelope luminosity 
L(t). If the intensities of the radiation, reflected and transmitted by the enve
lope, are denoted by Il(t) and 12(t),respectively, then we have 

I I ( ~ )  ro(t )Z2(t ) .  (30.17)= 

But the radiation density p(t) is equal to 

(30.18) 

and the envelope luminosity L(t) is related to the quantity 12(t)by the expression 

(30.19) 
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Therefore we obtain 

(30.20) 

Substituting (30.20) into (30.16) leads to the following equation for deter
mining L(t): 

4 d  
( t )-L ( t )= 3c dt [TO( t )r (i!) L ( t ) ]  (30.21) 

Clearly, the solution of Eq. (30.21) must satisfy the condition 

QD7 L ( t ) & =  E + !  L . ( t ) d t .  
(30.22)

0 0 

Such a solution has the form 

To calculate the envelope luminosity L(t) from Eq. (30.23) it is necessary /422 
to know the quantities r ( t )  and TO(t). As an example, let us take 

(30.24) 

where k is some parameter. Then instead of Eq. (30.23) we obtain 

(30.25) 

where 

(30.26) 

Let us f i rs t  assume that the envelope radiates only because of i ts  own in
ternal energy, i. e., L,(t) = 0. In this case it is seen from Eq. (30.25) that the 
envelope luminosity initially increases and then decreases (if k > 1). It is easy 
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to derive that the luminosity reaches a maximum for an  optical thickness value 
equal to 

3 c-To = 4(k- i )  u * (30.27) 

Assuming v w 1000 km/sec and k = 2, from Eq. (30.27) we find -ro ~ 2 0 0 .  When 

the optical thickness of the envelope becomes several times less than this value, 
the luminescence of the envelope is basically completed. 

An examination of Eq. (30.25) shows, in general, that when the stellar lu
minosity L,( t) decreases, the envelope luminosity L(t) initially increases (approx
imately as long as T~ does not decrease to the value given by Eq. (30.27)) and 

then decreases, gradually approaching the stellar luminosity L,(t) (Fig. 41). 

To compare theory with observations it is convenient to convert from enve
lope luminosity to quantities which are directly derived from observations, Such 

-L 

t 

Figure 41. 

quantities are the visual brightness of 
the nova and i t s  effective temperature 
(or  the corresponding spectral class). 

The effective envelope tempera
ture Te(t) is defined by the relation 

L ( t )  = 4nr?( t )aT,h( t ) ,  (30.28) 

from which it is seen that the quantity 
Te(t) slowly decreases with time (only 

if the envelope luminosity does not in- /423
2 

crease faster than r ). 

We will assume that the energy 
distribution in the envelope spectrum 
is given by Planck's formula. In this 

case the absolute visual magnitude of the envelope is determined by the formula 

29500 am 

M , ( t )  =-0.08 - 5 16r ( t )+-+ 2 51g(i - e TI(')), (30.29)T e( t )  

into which T from (30.28) must be substituted. e 

From Eq. (30.29) i t  follows that the visual luminosity of the nova should 
increase rapidly with time because of the rapid increase in the surface of the 
envelope for a relatively slow decrease in temperature. It is of interest to note 
that the visual luminosity can increase even for  a decrease in total brightness 
(since the increase in envelope surface is not compensated by a temperature 
decrease). 
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As calculations from the formulas presented show, the visual luminosity of 
the envelope increases rapidly a t  first,  then slows down (caused by the lumines
cence of the envelope a t  this time) and then increases more slowly with a decreas
ing total brightness. This process continues until the primary brightness maxi
mum is reached when the optical thickness of the envelope becomes of the order  
of unity. Then the envelope no longer absorbs all the stellar radiation, as before, 
but only a portion of it that decreases with time so that the nova brightness de
creases. 

The theoretical conclusions that have been discussed are confirmed, in  gen
eral, by observational data. Observations actually show that a slow temperature 
decrease occurs with the increase in nova luminosity. Moreover, before the pri
mary brightness maximum a slowing down was observed in the brightness rise for 
several novae, o r  even a slight decrease. 

However, to achieve better agreement between theory and observations i t  is 
apparently necessary to assume that the envelope brightness continues to increase 
after the slowing down in the luminosity rise. As will be shown below, this may 
be associated with the ejection of matter from the s tar ,  which begins after enve
lope separation. 

-I-- After separation of the envelopes from the3.  Ejection of stellar matter. 
star very hot stellar layers in an unstable state are revealed. The ejection of 
stellar matter should begin due to the effect of the ra.diation pressure force. When 
the optical thickness of the envelope in the continuous spectrum becomes less than 
unity, this process is observed firsthand. One can discern this from the so-call
ed diffuse spark spectrum which appears after the maximum in nova brightness. 
The shift of the ljnes of this spectrum attests to the fact that the ejection velocity 
of the stellar matter exceeds the envelope velocity. 

The ejection of stellar matter must obviously lead to an increase in the nova 
brightness. This is caused both by the luminescence of the ejected material and 
also by the slower cooling of the surface layers of the s ta r  itself. In addition, 
when the ejected material collides with the envelope, a portion of the kinetic en
ergy i s  converted into thermal energy and then into radiation. 

Now we will  consider the problem of the motion of the envelope, which the 
material ejected from the star overtakes. Let us determine both the change in 
envelope velocity and the amount of kinetic energy that is converted into radia
tion. 

At some fixed instant of time to, let  the envelope have a mass Mo and a ve

locity v0' 
Let us assume that after envelope separation ejection of stellar mat

t e r  occurs with a constant velocity u, with the amount of material ejected in 1 
second being equal to au. Let us assume that u > v

0 
and, therefore, the enve

lope mass  M and i t s  velocity v should increase with time. 

/424 


To find the dependence of M and v on the time t, one must write the equa
tion of motion of the envelope. Denoting the mass of material added to the 
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envelope in 1 second by q, we have 

d (Mu) 
dt -w (30.30) 

and 

dM 
q =-= a ( u - v). (30.31)at 

The equations that have been derived are  very simple to solve. Substituting 
= dM/dt into (30.30) and integrating, we obtainq 

M(a - u )  = Mo(u - vo). 

Introducing M from (30.32) into (30.31), we have 

Integration of this equation yields 

2a 
vi +z(n- uo) ( t  - to) 

Equation (30.34) defines the desired envelope velocity. 

(30.32) 

(30.33) 

(30.34) 

Substituting v from 
(30.34) into (30.32), we obtain the following expression for the envelope mass as 
a function of t: 

M =M o  1:1 +- (u- uo) ( t  - t o ) .  (30.35) 

By using Eq. (30.35) we can determine theamount of material added to the 
envelope in the time t - t0, i. e. , the quantity Q = M - Mo. This quantity, with 
the aid of Eq. (30.32), can also be represented in the form 

u -vo
Q = M - .  

E - uo (30.36) 

Let us now turn to a consideration of the clianges in the envelope energy. 
The kinetic energy of the matter added to the envelope during the time t - to is 

2equal to 1/2 Qu . A portion of this energy goes to increase the kinetic energy of 
2the envelope, which during the same time interval changes from a value of 1/2 Movo 
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to a value of 1/2 Mv2. The res t  of the energy, however, causes an increase in 
the internal energy of the envelope, which is then converted into radiation. The 
increase in the internal energy of the envelope is clearly equal to 

(30.37) 


Using Eqs. (30.32) and (30.36), we obtain 

i 
A E = - ~ 1 ( z z . - u ) ( u - z 7 ~ ) .  (30.38)2 

This formula defines the energy radiated by the envelope as the result of collis
ions with the matter ejected from the star. 

To compute from these formulas the changes in the velocity, mass and 
internal energy of the envelope, it is necessary to have data on the ejection ve
locity u of the stellar matter and the rate of ejection au. Prior to the moment of 
maximum brightness we obviously have no such data. After this moment, the 
diffuse spark spectrum can be observed, and the velocity u can be determined 
from the displacements of the lines of this spectrum. Moreover, after maximum 
brightness, an increase is observed in the displacements of the absorption lines 
of the principal spectrum, whichcan be interpreted as  an increase in the envelope /426
velocity due to the effect of the material ejected from the star. Observations al
low one to find the velocity v0 at time to, which can be taken as the moment of 

maximum brightness, and the velocity v at some time t. The envelope mass can 
be determined by one of the methods cited in the foregoing paragraph. All of this 
allows one to calculate from Eqs. (30.36) and (30.38)the amount of matter eject
ed by the s ta r  and the amount of kinetic energy being converted into radiation dur
ing some time interval after maximum brightness. These results can be extra
polated into the period before maximum brightness. In this situation it is found 
that the energy AE must play a significant role in the nova luminosity in that per
iod. Such calculations were first  made by V. G. Gorbatskiy (see [17]for more 
details). 

4. Envelope motion in interstellar space. As  the envelope of a nova ex
pands, its mass increases not only because of the material ejected from the s ta r  
and overtaking the envelope but also because of the interstellar material captur
ed by the envelope. Since the density of the interstellar medium is very low, its 
effect on envelope motion becomes evident only in the later stage of envelope ev
olution. Let us now discuss this stage, ignoring the arrival of stellar matter at  
the envelope. 

Let us assume that a nova has flared up in a homogeneous medium with 
density p. If, at the moment of outburst, the envelope mass is equal to Mo, then 
at a distance r from the star it becomes equal to 

t 


3 -.."p +Mo. 
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On the basis of the law of momentum conservation we have 

(30.39) 

where v0 is the envelope velocity at the initial instant of time and v i s  the envelope 

velocity at the distance r from the star. 

Substituting dr/dt instead of v in Eq. (30.39) and integrating, we obtain 

(30.40) 

where t is the time elapsed since s ta r t  of the outburst. Equation (30.40) defines 
the envelope radius r as a function of the time t. 

To find how the envelope expansion velocity changes with time, one must 
make use of Eqs. (30.39) and (30.40). Let us  find, for  example, the time span 
during which the velocity is halved. From (30.39) i t  is seen that v will be equal /427-
to 1/2v0 when 

(30.41) 

Substituting (30.41) into (30.40), we obtain 

(30.42) 

for the time span we are seeking. 

Listed in Table 48 are the time intervals within which the envelope velocity 
decreased by one-half and by one-hundredth, as well as the envelope radii when 
these velocities are reached. The average value of p = 3 - 10-24 g/cm 3 is taken 
for the density of interstellar space, and v0 = 1000 km/sec-for the initial enve
lope velocity. The table considers three envelope mass  values: lom4and 
10 solar masses. 

Oort [MI,studying for the first ~ i m ethe problem under consideration, al
so made a comparison of theory with observations. From the table it is seen 
that the slowing down of nova envelopes should become noticeable after a few de
cades. Generally speaking, however, this is not observed. For  example, the 
envelope of Nova Aquilae 1918 has expanded for 30 years without slowing down. 
The absence of a noticeable slowing down in this case is apparently explained by 

the relatively large envelope mass (equal to 10
-4 Mo). Another possible expla
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TABLE 48. SLOWING DOWN O F  ENVELOPES 
D U E T O T H E D R A G E F F E C T O F I N T E R -

STELLAR SPACE 

1- 10 
- ~~ 

0.5 0.91 0.5 0.01 
-. 

102 9800 4800 450300 
0.08 0.38 3.8 17.6 

nation is that during the time interval between outbursts the nova does not leave 
the region from which the interstellar matter was swept by the previous outburst. 

If the nova outburst occurred a t  a place with an increased density of inter
stellar matter, then the detection of the envelope slowing down becomes more 
probable. In view of this, Nova Persei 1901 is of considerable interest since i t  
flared up, as we know, within a dust nebula and illuminated it. A comparison of 
photographs of the envelope of this nova, taken in 1917 and 1934, showed that dur
ing that time the envelope motion did slow down and in some cases the envelope 
was distorted. The latter can be explained by a nonuniformity of the dust nebula. 
It is interesting that the distorted edge of the envelope is extremely bright. Ac
cording to Oort the luminosity is caused by collisions of envelope atoms with the 
particles of the dust nebula. This constitutes an additional confirmation of the 
slowing down of the envelope. 

As already stated, in studying the motion of a nova envelope both envelope 
acceleration by material ejected from the s ta r  and retardation by interstellar 
space must be taken into consideration simultaneously. This was done in I. N. 
Minin's work (see [4]). The laws of envelope motion, presented above, result 
from his solution in the form of special cases. 

31. Supernovae 

_1. Results of observations. As we already know, the absolute magnitudes 
mof novae a t  maximum brightness are equal to -7 on the average. There are, 

however, some flaring stars which, a t  maximum brightness, are thousands and 
tens of thousands times brighter than novae. These s t a r s  are called supernovae. 

Supernovae flare up much less frequently than novae. Only three supernovae 
have been observed in our Galaxy in the last thousand years. One of these, ac
cording to Chinese records, flared up in the Taurus constellation in 1054. Tycho 
Brahe observed the second supernova in 1572 in Cassiopeia, and Kepler observed 
the third in 1604 in Ophiuchus. Supernovae, because of their immense brightness, 
can, however, also be discovered in other galaxies. The first such supernovae 
was discovered in the Andromeda nebula in 1885 (S Andromedae). Tens of super-
novae have since been found in other galaxies, with the spectra and light curves 
having been determined for  many of them. 

/428 
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As established by Minkovskiy, supernovae are divided into two groups on 
the basis of the nature of brightness and spectral variations. Type I supernovae
all have very similar light curves, with the brightness decreasing exponentially. 
The light curves of @pe IT supernovae a re  distinguished by their great variety 
and by a certain similarity to the light curves of ordinary novae. The spectra of 
type I supernovae consist of bright bands, separated by darker spaces. These 
bands have not yet been identified. Two bands, identifiable with the A 6300 and 
A 6364 A forbidden lines of neutral oxygen, a r e  seen in the spectra only in the rel
atively later stages. From the width of these bands one can conclude that the ve
locity of the ejected envelope is about 1000 km/sec. Type II supernovae before 

I_/429
the moment of maximum brightness have a continuous spectrum with a high-in
tensity ultraviolet end (color temperature of about 40,000°). After maximum 
brightness is reached, broad bright bands, identifiable with known lines (H, N 
111, etc. ), appear in the spectrum. The width of these bands indicates tremendous 
envelope expansion velocities-of the order of 6000 km/sec. Types I and 11 super-
novae apparently a re  quite different in their physical nature. 

Rapidly expanding gaseous nebulae a re  found at the point of supernovae flare-
ups. It is difficult to doubt that they are formed as the result of the ejection of 
material during the supernova outbursts. The Crab nebula, expanding with a ve
locity of about 1100 km/sec, is observed now at the location of the supernova in 
1054. If the expansion velocity is assumed constant, then the time of the s tar t  of 
the expansion agrees approximately with the date of the outburst. The Crab neb
ula has been studied very thoroughly and more will be said about i t  below. The 
remains of the 1572 and 1604 supernovae are expanding filamentary nebulae. The 
brightness of these nebulae is low, however, and i t  is difficult to study them. 

The fact that the remains of supernovae are intense sources of radio emis
sion has considerable importance in understanding their nature. The radio emis
sion from the Crab nebula was measured first (by Bolton in 1947), and then the 
emission from the remains of the 1572 and 1604 supernovae. The observations 
show that the intensity of this emission decreases with an increase in frequency, 
and i t  is usually represented in the form 

Iv - v-", (31.1) 

where n > 0. In particular, for the Crab nebula n = 0.2 ,  and for the remains of 
the other two supernovae that have been mentioned n = 0.8. As we know (see 
Section 18), in the case of thermal radiation the intensity in the radio frequency 

2band is constant for a transparent nebula and proportional to u for a nontranspar
ent one. Therefore we must conclude that the radio emission of the supernova re
mains are nonthermal in origin. As we will see later, the radio emission spec
trum given by Eq. (31.1) can be explained on the assumption that i t  has a synch
rotron origin. 

Besides the three supernova remains, many other discrete sources of radio 
emission a re  found in the Galaxy. Some of them a r e  identified with diffuse gas
eous nebulae and, on the basis of a number of their characteristics, they also can 
be considered to be the remains of supernovae. The most intense radio source in 
the sky, Cassiopeia A, is, in  particular, one of these objects. It has been identi
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fied with a ring-shaped nebula, expanding with a velocity of about 7000 km/sec. /430 
From a comparison of this velocity, determined from the spectrum, and the ex
pansion velocity in angular measure it has been found that the nebula is at  a dis
tance of 3400 parsecs from us, This nebula is evidently the remains of a super
nova that flared up in about 1700. However, the supernova could not be observed 
because of the vast distance to it and considerable interstellar absorption. 

In all, at the present time 15 radio emission sources are known, identified 
with nebulae and able to be considered as the remains of supernovae. They differ 
considerably from each other since they are at various evolution stages. The 
youngest of these nebulae is Cassiopeia A, the age of which is about 260 years.
Most of the known remains of supernovae a re  located at distances of less than 
2000 parsecs, and therefore the total number of them in the Galaxy must be fair
ly large (of the order of 1000). Since the lifetime of a nebula, ejected during a 
supernova outburst, apparently does not exceed 100,000years, then in our Galaxy 
one supernova should flare up about every 100 years. This estimate, of course, 
is very crude, but i t  agrees ,with results of calculations of supernova outbursts 
in other galaxies. 

2. Synchrotron radiation. The mechanism of synchrotron radiation is at
tractive as an explanation of the origin of the radio emission of the nebulae form
ed during supernova outbursts. Such radiation arises from a relativistic electron 
moving in a magnetic field. The name of this effect is associated with the fact 
that i t  was first  observed in a synchrotron, intended for  producing high-energy 
particles. 

The motion of an electron in a homogeneous magnetic field comprises a 
translational movement along the lines of force and a rotation about them. In 
this situation the electron radiates with a frequency 

vo =	-eH (31.2)2nmc’ 

where H is the magnetic field component perpendicular to the velocity. At the 
field intensities characteristic of astrophysical objects, the frequency vo is us

-5ually very low. For example, for H M 10 oersted we find, from Eq. (31.2),
4that vo e30 sec-l, i. e. , the radiation wavelength is of the order of 10 km. 

Only a nonrelativistic electron radiates in this fashion. If, however, the 
electron is relativistic, i. e. , its energy E satisfies the inequality 

E > mc2, (31.3) 

then the character of the electron radiation is altered drastically. In this case, /431-
instead of energy of a single frequency vo, the electron radiates energy in a 
continuous spectrum with a maximum near the frequency 

E Z 

mc2Ym =vel(-) , (31.4) 
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where vo is defined by Eq. (31.2) .  If the inequality (31 .3)  is satisfied to a very 
high degree, then a considerable portion of the energy will be radiated in the ra
dio frequency band. 

The problem of energy radiation by a relativistic electron, moving in a mag
netic field, has been treated by a number of authors. It turns out (see, for  ex
ample, [20]) that the amount of energy of frequency v, radiated by an electron 
with energy E in 1 sec in a unit frequency interval, is equal to 

(31 .5 )  

where cv = V / V  I1 p(a!) and p(a) is the function depicted in  Fig. 42. m 

Let us note that the function p(a) reaches a maximum for  a! P 1/2. When 
a! << 1, it has the form 

p ( ~ )= 0.256u’’a (31 .6)  

and when a! >> 1, 

Since the quantity P(v, E) is known, the volume emission coefficient E can 
V 

easily be determined. Let us  denote the number of electrons with energy from E 

to E + dE in 1cm 3 by n(E)dE. Then the amount of energy of frequency v, radiated 
by these electrons in 1 see, will be equal to P(v,  E)n(E)dE. Therefore the volume 
emission coefficient will be defined by the formula 

Ev =	-5 O’ P ( v , E ) n ( E ) d E  (31 .8)
4% 

Let us assume that the number of electrons n(E) decreases with an increase 
in energy E in  the form of a power law7 i. e., 

K
n ( E )= ET -’ (31 .9)  

where K and y are constants. Substituting (31 .5)  and (31 .9 )  into (31 .8 )  and per
forming the integration, we obtain 

Y+l f-7 

E,.= C ( y ) R R  2 v 2 , (31.10)  

where C(y )  is some constant depending on y .  
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From Eq. (31.10) it is seen that the emission coefficient E 
V 

decreases with /432 
an increase in the frequency v, if y > 1. The intensity of the radiation, coming 

from any object must exhibit the same 
frequency dependence if there is no 

Wa) 	 absorption in  this object and along the 
path from it to the observer. As we 
recall, the radio emission of the re
mains of supernovae is characterized

008 ' by a decrease in intensity with an in
acs . crease in frequency, with this rela

tionship being represented by Eq.
ac4 (31.1). Thus, the radio emission of 
aoz supernova remains can be explained 

by the fact that it has a synchrotron 
8 , . 1 ' 1

I 

2
1 

3 4 5 6 7
, 

8
. - nature and the velocity distribution of 

a the relativistic electrons is given by 
Eq. (31.9). In particular, for the 

Figure 42. Crab nebula one must take y = 1.4,  
and for the remains of the 1572 and 
1604 nebulae-y = 2 . 6 .  

Assuming the synchrotron mechanism for the origin of the radio emission 
of a nebula resulting from a supernova outburst, we obtain the following expres
sion for the radio emission flux coming from it: 

(31.11) 

where V is the volume of the nebula and r is the distance to it. Assuming the 

quantities H
V Y  

V and r are known from observations, the quantity KH (Y+1)/2 Can 

be determined from Eq. (31. 11). 

Knowing this last  quantity allows one to estimate the density of relativistic 
electrons in the nebula. The emission in the radio frequency band is clearly 
caused primarily by electrons with energy within a certain interval. One can 
roughly assume that the electrons must have an energy in excess of the value 

(31.12) 

9From (31.12) it is seen that E 1 10 e V  for meter waves and a field intensity 

of about oersted. 
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For the density of electrons with energy E > El we obtain the formula /433 

(31.13) 

into which Eq. (31.12) for El must be substituted. We see that nl w KH-Y - 1  and, 
2 

therefore, to determine nl the field intensity H must be known besides the quan
tity KH(' + ')I2 found on the basis of observational data. The value of H is usu
ally determined from the condition that the turbulent motion energy and the mag
netic energy a re  equal. For nebulae that are the remains of supernovae i t  is 
found, in this manner, that H fi! gauss. In this case an estimate of the den

sity of electrons with an energy in excess of 109 eV leads to values of the order 

of cm -3 . This density constitutes a negligible fraction of the total free 
electron density {which is about 103 cm -3 ), determined from the Balmer line 
emission of nebulae. 

It should, however, be noted that the smallness of the density of relativis
tic electrons gives no basis for concluding that they represent a small total en
ergy in the nebula. Computing this value from the formula 

OD 

U =  V 5 n ( E ) E d E .  
EI (31.14) 

we find that it will be of the order of 1 0 ~ ~ - 1 0 ~ ~ergs. Consequently, this energy 
can represent an appreciable portion of the total energy radiated during a super
nova outburst. 

3. Crab Nebula. The Crab nebula, of all the remains of supernovae, has 
been studied in most detail. It is not only an intense source of radio emission, 
but it is also quite bright in the visible spectral region (ninth magnitude). 

Photographs show that the nebula consists of two parts. The inner part is 
an amorphous mass, and the outer-a delicate fibrous structure. The continuous 
spectrum ar ises  in the amorphous part of the nebula; the fibers, however, exhibit 
a bright-line spectrum consisting of the hydrogen Balmer lines, the forbidden 
lines of N II, 0 I1 and others. The lines a re  split, which is explained by the ex
pansion of the nebula. Two weak stars, one of which has no absorption lines in 
the spectrum, are visible at  the center of the nebula. It is assumed that this is 
the one that flared up in the form of the supernova. 

The hypothesis of synchrotron radiation was advanced to explain the radio /434
emission of the Crab nebula. This hypothesis was later confirmed by a number 
of facts. In particular, i t  should be noted that, according to theory, synchrotron 
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4 ~ transitions), extremely unusual prop
erties had to be ascribed to the nebula 

l3-U - (a mass of about 20 M a  and an electron 

/
/-- temperature of the order of hundreds 

/ 
of thousands of degrees). Finally, 

iff-34. / I. S. Shklovskiy [191 assumed that the 
/
/ continuous spectrum in the visible 

/ spectrum has a synchrotron origin,
N?-a- /

/ just like the radio_frequency spectrum. 
In other words, both of these spectra, 

Ira- 4 / ,  ~ 

identical in nature, a r e  an extension 

As seen from Eq. (31.12), the higher the radiation frequency, the greater 
the energy of the relativistic electron, producing this radiation, must be. There
fore if the radio emission is caused by electrons with an energy of the order of 

910 eV, then electrons with an energy of about 10" e V  a re  necessary to produce
radiation in the visible region of the spectrum. 

The results of polarization observations of the nebula a re  a confirmation 
of the validity of the proposed explanation of the continuous spectrum of the Crab 
nebula in the visible region. These observations have been made by many inves
tigators: V. A. Dombrovskiy, E. E. Khachikyan, e t  al. It was found that the de
gree of polarization of the nebular emission in the visible portion of the spectrum 
is very high, amounting to 50% in isolated portions of the nebula. 

The problem of the sources of relativistic electrons in the Crab nebula and 
in the remains of other supernovae is very important. One might think that the /435
relativistic electrons appear at  the time of the outburst itself. It must be kept 
in mind, however, that the lifetime of these electrons is not long since they lose 
their energy quite rapidly. In particular, a considerable fraction of the energy 
is expended as radiation by the electrons moving in a magnetic field. Using Eq.
(31.5), we find that in the case given the change in electron energy with time is 
defined by the equation 

(31.15) 
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Substituting Eq. (31.4)  here, we obtain 

dE 
~ 

dt 
= -AIZ2EZ, (31.16)  

where A is a constant (A fi: 2.4- if E is expressed in ergs, H in  oersteds and 
t in seconds). Integration of Eq. (31.16)  yields 

(31.17)  

where E0 is the initial electron energy (for t = 0). From (31.17)  it follows that 
the electron energy is reduced by one-half in the time 

i 
f i  = 

AH2Eo * 
(31 .18)  

4For Eo M 10 l1  eV and H M oersted we find from Eq. (31 .18)  that tl w 10 

years. This time is an order of magnitude greater than the life of the Crab neb
ula; however, i t  must be realized that electrons can lose energy by other means 
also (for example, in ionization). Therefore it was assumed that relativistic 
electrons enter the nebula from the s ta r  for some time beyond the outburst. Pos
sible mechanisms for the appearance of relativistic electrons in the nebula itself 
have also been indicated (see Section 34). 

Let us say a few words about the filamentary portion of the Crab nebula. 
The emission of the filaments is caused by the ultraviolet radiation of the amor
phous part o r  because of heating due to collisions with the interstellar medium. 
The density of free electrons in the filaments and the mass of the latter can be 
determined from the intensity of the bright lines. It is found that the mass of the 
filamentary portion of the nebula is quite large-about 0 .1  iYl&. The mass of the 
remains of the 1572 and 1604 supernovae (members, like the 1054 supernova, /436 
of type I) lead to somewhat lower values. Nevertheless, one can state that much 
larger masses are ejected during supernova outbursts than during normal out
bursts. 

Evidently, even larger masses are ejected during type I1 supernova out
bursts than during type I supernova outbursts. According to estimates that have 
been made, the masses of remains of type 11 supernovae a re  sometimes of the 
order of several tens of solar masses. It should be kept in mind, however, that 
both the material ejected during outburst and the material of interstellar space, 
captured by the expanding envelope, a re  included in the nebulae now observed. 
Takinginto into account, values of the order of 1 M a  are  obtained for the mass 
ejected during type I1 supernova outbursts. If these estimates are correct, then 
the big difference in the envelope,masses of type I and I1 supernovae indicates 
there are intrinsic differences in their physical nature. 
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4. Supernovae and cosmic rays. We have seen that in the nebulae formed 
during supernova outbursts, there a re  a large number of relativistic electrons. 
As the nebulae expand, the relativistic electrons enter the interstellar medium 
and begin to diffuse into it. Simultaneously, heavy particles with high energies 
(in particular, protons) appear in the interstellar medium. The number of heavy 
particles must be even greater than the number of relativistic electrons since the 
latter, because of radiation losses, have a shorter lifetime than the former. 

On the other hand, we can deduce the presence of high energy particles in 
interstellar space on the basis of the cosmic ray phenomenon. Cosmic rays a re  
known to be composed of protons, a-particles and a small number (about 1%)of 
nuclei of heavier atoms. Therefore the question ar ises  as to whether supernova 
outbursts can be the cause for the formation of cosmic rays. 

In order to answer this question, we must, first of all, estimate the average 
energy density of cosmic rays in the Galaxy. From the magnitude of the cosmic 

rays incident on the earth's atmosphere, a value of about 10 -12 erg/cm 3 is ob
tained for their energy density. It should be noted that this value is relatively 
large: in order of magnitude i t  is comparable to the average radiation density in 
interstellar space. 

Let us  now see what cosmic ray energy densities can be produced by super
nova outbursts. One can assume that supernova outbursts in the Galaxy occur 

about once every 100 years and cosmic rays with an energy of about IO4? ergs 
a re  produced during each outburst. The high energy particles survive for a very /437 

long time in the Galaxy-about 108 years (it is determined by the probability of 
collisions with the nuclei of interstellar atoms). Therefore the total energy of 
the cosmic rays in the Galaxy, formed during supernova outbursts, must be of 

the order of ergs. Dividing this energy by the volume of the Galaxy, amount
ing to about cm 3 , we arrive at  a value of the order of erg/cm 3 for the 
energy density. Since this value is not much different from the cosmic ray energy 
density determined from observations on Earth, the hypothesis that cosmic rays 
a re  produced during supernova outbursts appears very likely. 

A very characteristic property of cosmic rays-their isotropy-must be 
noted. Lf the cosmic rays a re  coming to us  directly from their sources, then one 
must assume that the sources are uniformly distributed throughout the sky. There 
is, however, no need for such a requirement since the isotropy of the cosmic rays 
apparently is the result of the dispersion of the particles comprising the-m in 
galactic magnetic fields. 

Other hypotheses have been proposed to explain the origin of cosmic rays. 
In particular, some mechanisms have been mentioned for  the acceleration of the 
particles a s  they move through the Galaxy. 

More details on the problem of the origin of cosmic rays can he found in the 
book by V. L. Ginzburg and S. I. Syrovatskiy [20]. 
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CHAPTER VI1 

INTERSTELLAR SPACE 

The interstellar material in our Galaxy occurs both in the form of dust and 
in the form of gas. The existence of interstellar dust is evidenced primarily 
through its absorption of star light in the continuous spectrum. This absorption 
is selective: i t  is weaker in the red portion of the spectrum than in the ultravio
let; it is for this reason that distant objects appear "reddened" to us. 

Absorption is especially great in certain regions of the sky. This is caused 
by dark dust nebulae relatively near to us. Luminous dust nebulae, which shine 
because of the stellar radiation reflected by them, are also observed in the Gal
axy. 


The presence of gas in interstellar space can be deduced from the absorp
tion lines caused by i t  in interstellar spectra. N e a r  hot stars the interstellar gas 
is highly ionized and it shines because of the ultraviolet energy of the stars. The 
radiation of the interstellar gas, both line and continuous, is observed not only in 
the visible spectrum, but also in the radio frequency region. 

Interstellar matter is quite heavily concentrated in the galactic plane. A s  
a first approximation it is assumed that it forms a homogeneous layer or that i ts  
density decreases exponentially with distance from the galactic plane. 

Actually, the interstellar matter is extremely inhomogeneous and is char
terized by large density fluctuations. Sometimes it is assumed that i t  consists 
of individual clouds, moving with respect to each other. It should be noted that 
if the interstellar matter were homogeneous at some instant of time, regions of 
lower and higher density would be formed because of the motion of the stars and 
the light pressure caused by them. 

The amount of interstellar matter in the Galaxy is very great. Its mass 
apparently amounts to about one-hundredth of the mass of the stars. Therefore 
interstellar matter should play a large role both in the physical, as well as the 
cosmogonic processes, occurring in the Galaxy. 
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32. Interstellar Dust 

1. Relation between stars and nebulae. As already mentioned, the emis
sion of nebulae is caused by stellar radiation, One can nearly always specify the 
star o r  group of stars which causes the emission of a given nebula. As observa
tions show, the emission of gaseous nebulae is caused by very hot stars (spectral 
classes 0 and BO). This fact is entirely understandable since the ultraviolet ra
diation energy of the colder stars is too low to cause a noticeable nebular emis
sion in the visible spectrum. From observations it also follows that dust nebulae 
shine primarily because of the effect of the radiation of the colder stars (spectral 
classes later than Bl). At f i rs t  glance there seems to be a strange absence of 
dust nebulae, reflecting the radiation of hot stars. Some hypotheses have been 
put forth to explain this phenomenon. According to one of them, hot stars, being 
also stars of high luminosity, repel dust by light pressure. According to another 
hypothesis, hot stars convert the dust to gas through the action of radiation. In 
fact, these observational data are apparently explained by the fact that there is 
always some quantity of gas contained in dust nebulae. If the nebula is near a 
cold star, then the dust shines and the gas does not. If, however, a hot star is 
in the vicinity of the nebula, both the dust and the gas shine. The gas, however, 
shines much more brightly than the dust since the ultraviolet radiation of the hot 
star is much more intense than its radiation in the visible spectrum. This con
clusion was drawn in the paper by G. A. Shayn, V. F. Gaze and s.33. Pikel'ner [l] 
in which the question of the presence of dust and gas in nebulae was examined in 
detail. 

It is of interest to clarify the nature of the relationship between a nebula 
and the star that is illuminating it. The nebula and star can be genetically re
lated (i.e., of common origin), and can also have come together by chance while 
moving through the Galaxy. V. A. Ambartsumyan and Sh. G. Gordeladze [2] re
solved this problem in the following way. 

If the relationship between a nebula and a star is by chance, then the num
ber  of nebulae associated with stars of different spectral classes should be pro
portional to the regions of space illuminated by the s tars  of these classes. Let 
us see whether such a proportionality actually exists. 

Each star illuminates a volume V around itself, and the illumination within 
this volume exceeds some critical value E. When a nebula enters into this volume, 
i t  shines, and outside this volume it is dark. For a star of luminosity L the ra
dius ro of this volume is clearly determined from the relation 

(32.1) 


and the size of the volume itself is equal to 

4 L '12 

3v==-,( -)4xE - (32.2) 
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Since the luminosity L is related to the absolute magnitude M of the star by the 

expression L - lo-'* 4M, then instead of (32.2) we have 

where V0 is the value of the volume V for a s tar  of zero absolute magnitude. 

Let q ( M )  be the luminosity function for stars of a given spectral class, i.e., 
q(M)dM is the probability that the absolute magnitude of the s ta r  lies in the inter
val from M to M + dM. Then the average value of the volume V for stars of this 
class will be equal to 

(32 .4)  

If we denote by n the number of stars of a given spectral class in a unit volume, 
then the quantity nV will be the desiredfraction of space illuminated by these stars. 

To compute the integral of (32.4) V. A. Ambartsuyman suggested using the 
fundamental integral equation of stellar statistics 

(32 .5)  

where N(m) is the number of stars, of the spectral class being considered, with 
a visual stellar magnitude from m - 1/2 to m + 1/2 in the solid angle 9. We will 
assume that the s tars  a r e  uniformly distributed in space, i. e. , n = const. Then, 
taking into consideration the known formula 

I/ E= rn. + 5 -Slg r ,  (32 .6)  

instead of (32 .5)  we obtain /442 

(32.7) 

Here, light absorption in the Galaxy is disregarded. Equating the relation (32 .4)  
and (32.7), we find 

(32 .8)  

Equation (32.8) makes it possible to determine easily the quantity nv  from 
observational data. Values of this quantity for stars of different spectral classes 
are listed in Table 49. The number of nebulae, illuminated by the s ta rs  of these 
classes, a re  given in the same table for comparison. 
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TABLE 49. COMPARISON OF THE FRACTIONS O F  

SPACE ILLUMINATED BY STARS OF DIFFERENT 

CLASSES, WITH THE NUMBERS OF NEBULAE IL-
LUMINATEDBY THE RADIATION O F  THESE STARS 

' class 
No. of SpectralI class 

No. of 
nebula 

0 F 2 
139 . 

B i  -BY 
i 
2 

A 5 M 0 
.___.  .- -.- . .-

--__--

Commas represent decimal points. 

We see that the numbers in the columns of Table 49 are approximately pro
portional to each other. From this one can conclude that the relationship between 
nebulae and stars is random. 

Strictly speaking, the data for class 0 and BO stars should not be included 
in the table since these stars are associated with gaseous nebulae and not with 
dust nebulae. Therefore the volume of space illuminated by such a s ta r  will not 
be defined by Eq. (32.2).  

One more important consequence can be drawn from the table. If we add 
all the numbers nv, then we obtain the fraction of space illuminated by all the 
stars. This fraction is equal to 5- Since only those nebulae, which enter 
the illuminated portion of space, shine, then we are forced to the conclusion that 
the number of bright nebulae in the Galaxy is about 2000 times smaller than the 
number of dark nebulae. 

Thus, the number of dark nebulae in the Galaxy is very large. After having 
estimated this number and after having adopted some average value for the opti
cal thickness of a nebula, derived from observations of the known dark nebulae, /443 
we can determine the value of the average absorption, caused by the nebulae, per 
unit path length. This value turns out to be approximately equal to the value of 
the total light absorption in the Galaxy found from observations (of the order of 
one stellar magnitude per kiloparsec in the galactic plane). Therefore we can 
consider that the total light absorption in the Galaxy is caused primarily by the 
presence in it of a large number of dust nebulae. Because of the random distri
bution of nebulae, light absorption in the Galaxy is very nonuniform. If a nebula 
is near to us and i ts  optical thickness is relatively great, then the presence of 
such a nebula is detected from the mal-ksd decrease in the number of stars up to 
a certain magnitude in a specific region of the sky. 

2. Fluctuations_-of the Milky Way brightness. The patchy structure of in
terstellar space leads to large variations in sky brightness in different directions, 
Given the number of nebulae (or, as they are sometimes called, clouds) per unit 
path length and their absorptivity, we can determine the brightness probabilities. 
Let us do this, following the work of V. A. Ambartsumyan [3]. 
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For simplicity let us take the galactic plane and letus assume that the stars 
are uniformly distributed in  it. Let us  denote the star-caused emission co
efficient by E .  We will assume that all nebulae possess the same transparency, 
equal to q. The number of nebulae, located in a given direction up to a distance 
s from us, we will denote by n(s). Then the intensity of the radiation coming to 
us in this direction will be equal to 

The behavior of the integral function n(s) is different in different directions, so 
that sky brightness fluctuations result. 

Let f(1)be the probability that the radiation intensity is less  than I, i. e. , 

(32.9) 

We will employ the following method to determine the function f(1). 

Let us rewrite Eq. (32.9) in the form 

(32.10) 

where a is some small distance. One can assume that the quantity n(a) has either 
a value n(a) = 0 o r  n(a) = 1. Let us denote by v the average number of clouds per 
unit path length. Then the probability of the f i rs t  of these n(a) values will be 
1 - va, and the probability of the second will be va. The probabilities of other 
values for small a can be ignored. In the f i rs t  of the cases being considered, the 

a 
integral J n(s)ds is obviously equal to a, and in the second case it is equal to a9, 

0 
where 0 < 9 < 1. Therefore instead of Eq. (32.10) we obtain 

Since the probability of measuring one brightness or another should not 
change when the point of observation is changed, we have 

(32.12) 
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Because of this, Eq. (32.11) assumes the form 

f ( Z ) = ( i  -va)f(l-aee)+vaf (I;aaE). (32.13) 

Taking advantage of the smallness of a, instead of (32.13) we obtain 

o r  

(32.15) 

Instead of I let us  introduce the dimensionless brightness u, equal to 

V 
u=I---- (32.16)e 

Then we will have the equation 

(32.17) 

for  the determination of the function f(u). 

Let us denote by g(u)du the probability that the dimensionless brightness u 
lies within th.e interval from u to u + du. Since g(u) = f’(u), then from Eq. (32.17) /445
we obtain 

(32.18) 

Equation (32.18) is what we are looking for. From i t  one can easily derive 
an expression for the function g(u) in the form of some series. Equation (32.18) 
also provides the possibility of determining the moment of the function g(u), Le., 
the quantity 

without a prior determination of the function g(u). -
Let us determine, for example, the quantities and u 2 , which are of inter

est for certain theoretical applications. Multiplying Eq. (32.18) by u, integrating 
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with respect to u over the limits from 0 to 00 and making use of the normalization 
condition of the function g(u), we obtain 

E--- i (32.20) 
1 - 9  * 

After multiplying Eq. (32.18) by u2 and integrating, we similarly obtain 

(32.21) 

With the aid of (32.20) and (32.21) we obtain the following expression for the rel
ative standard deviation: 

(32.22) 

The theoretical results that have been presented can be compared with ob
servational data. The latter a r e  photometric-maps of the Milky Way. On the 
basis of these maps, the average brightness I and relative standard deviation 

fl/?are determined. With the aid of Eqs. (32.16) and (32.20) we obtain 

(32.23) 

Using Eq. (32.22) also, we find 

(32.24) 

Since the left sides of these relations are known from observations, these rela
tions allow a determination of the quantities q and E / V  to be made. 

With this method a value of q = 0.8 was obtained for the average cloud 
transparency. Consequently, when star light passes through a cloud, its bright
ness is reduced by 0.25 of a stellar magnitude. The value of the quantity E / V  

was also found with the aid of Eq. (32.23). With the quantity E known from stel
la r  computations, this permitted a determination of the quantity v. It was found 
that there are,  on the average, four nebulae in a path length of 1kiloparsec. 
Thus, the dust nebulae in the Galaxy produce an absorption approximately equal 
to one stellar magnitude per kiloparsec. This result agrees with the absorption 
value determined from o5servational data on the attenuation of the light of dis
tant objects in the galactic plane. 

The presence of dust material in the Galaxy causes an absorption not only 
of star light, but also of the light of extragalactic nebulae (i.e., the nebulae of 
other galaxies). The number of extragalactic nebulae N up to a specific stellar 
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magnitudeis known to decrease with a decrease in the galactic latitude b. The 
region of the sky near the galactic equator is the "avoidance zone" for extragal
actic nebulae. This is explained by the fact that the optical path length of a ray 
in the layer of absorbing material increases with a decrease in b. From the 
variation of the quantity N as a function of b one can determine the optical thick
ness of this layer (it turns out to be about 0.5). The variation of the quantity N 
as a function of the galactic longitude Z for a constant b can also be examined. 
As Z changes, the quantity N exhibits appreciable fluctuations, caused by the 
random distribution of dust clouds in the Galaxy. V. A. Ambartsumyan develop
ed a theory of the fluctuations in the numbers of extragalactic nebulae and, on 
its basis, determined the average optical thickness of one cloud. 

The theories, developed by V. A. Ambartsumyan, on the Milky Way bright
ness fluctuations and on the fluctuations in the numbers of extragalactic nebulae 
have been expanded in many respects by a number of authors: Chandrasekhar 
and MEinch [41, T. A. Agekyan [51, and others. 

3. Emission of dust-nebulae. Dust nebulae shine because of their reflec
tion of stellar radiation (as a result, they a re  sometimes called reflective neb
ulae). The nature of the dust particles can be deduced from the emission of the 
nebulae. To do this it is obviously necessary to relate the observed brightnesses 
of nebulae with quantities characterizing light scattering processes in a volume 
element. 

A theoretical determination of the brightnesses of nebulae meets with great 
difficulties. One of these difficulties is caused by the extremely complex geo
metrical shapes of the nebulae. Another difficulty is caused by the fact that each 
volume element of a nebula scatters the radiation, entering i t  not only from a 
star but also from other parts of the nebula. In other words, multiple light scat
tering occurs in nebulae. 

To solve, however, the problem of determining the optical properties of 
the dust particles, we need not consider the complicated shapes of the nebulae 
and can restrict  ourselves to ones that a re  fairly simple. Let us now consider 
a homogeneous spherical nebula with a star located at  i ts  center. Some of the 
nebulae that have been observed can evidently be considered to be spherical 
since their isophots are nearly circular. 

We will assume that a star of luminosity L is located at the center of a 
spherical nebula of radius r0' We will characterize the optical properties of the 
nebular material by the volume absorption coefficient CY,the probability of sur
vival A of a photon during an elementary scattering act (this quantity can also 
be called the particle albedo) and the scattering indicatrix x(y),  where y is the 
angle between the direction of the radiation, incident on a given volume, and the 
direction of the radiation, scattered by this volume. It is understood that the 
quantities CY,h and a(y )  are  frequency dependent. 

Let us consider the process of multiple light scattering in a nebula [6]. We 
will denote the unknown intensity of the scattered radiation by I. It depends both 
on the distance r from the star and also on the angle 9 between the radiation 
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direction and the radius vecor. The radiation transfer equation, defining the 
quantity I, has the form 

(32.25) 

in the case of spherical symmetry, where E is the volume emission coefficient. 
Introducing the notations T =arand E =as, instead of Eq. (32.25) we obtain 

(32.26) 

The quantity S is determined by the scattering of the light, entering a given
volume, from the star and also from the nebula. It can be represented in the 
form 

(32.27) 

where the integration is over all directions. Assuming that the radiation direc
tion at  a given point is characterized by the polar angle 4 and the azimuth cp, we /448-
obtain 

COS 1 = cos 6 cos 6' + sin 6 sin 6' cos ('p -9') (32.28) 

and dw = sinb' d9'dq'. Designating 

(32.29) 

and 

(32.30) 

instead of Eq. (32.27) we have 

(32.31) 

Thus, we have Eqs. (32.26) and (32.31) for determining the unknown func
tions S(T,  4) and I(T, 4). A boundary condition, expressing the fact that there is 
no radiation striking the nebula from the outside, must still be added to these. 
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From Eqs. (32.26)and (32,31)we can derive an integral equation defining 
the function S(T, 4). To do this the quantity I(T, 9) must be found from Eq. (32.26)
and substituted into Eq. (32.31). 

In the case of a spherical scattering indicatrix, i. e. , for  x(y)= 1, the quan
tity S depends only on T.  In the case given the integra1 equation cited is obtained 
in the form 

?b ?LA 
TS(T) =-f [Ei IT -7’ I -Ei (T-+I!)]S(T’)T‘&’ -e-%, (32.32)

2 0  T 

where T0 =ar0 is the optical radius of the nebula. 

When T~ = 03, i t  is easy to find an exact solution of Eq. (32.32). Introduc

ing the function 

(32.33) 


we obtain the equation 

00 

U (T) =-3. 
2 [Ei I T  - T’ I 3.Ei (T-+ T’)]U(T’)  dr’ +?.A Ei T .  (32.34) 

0 

for  its definition. Denoting the resolvent of Eq. (32.34)by r(T, 7’) and assuming /449-
r ( T ,  0) = @(T), we see that U(T) = A@(T),and this means 

A 
S(T) = - - - W ( z ) .  (32.35)7 

The function @(T)  was defined, earlier by Eq. (27.21). 
find 

Using this formula, we 

(32.36) 


where the quantity k is related to h by the expression? In=. The function 
2k 1 - k  

S ( T )  contains, in the form of an additive term. the quantity 

AASi(%)=-
-3 

(32.37) 
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representing the function S ( T )  caused by first order scattering. Values of the ra
tio S ( T ) / S1(T),computed with the aid of Eqs. (32.36) and (32.37), are listed in 

Table 50 for different values of the particle albedo A .  

TABLE 50. VALUES OF THE QUANTITY S(T) /S~(T)  

1,oo 1.00 1,oo 4.89 8.9: 
1.07 1,12 i,i7 8,53 20.9 
1.12 1,23 1.35 13.8 4s 0 
1,22 1.43 1.70 21.4 92.0 
1.31 1,62 2,08 33,l fSi  
1,40 1,82 2,40 
- ..._ 

Commas represent decimal points. 

The table clearly shows the role of higher order scattering for different A .  
For each h there exists, around the star, a region in which higher order scatter
ing plays a smaller role than single scattering, but outside this region the situa
tion is reversed. The size of this region is greater, the smaller h .  It must be 
borne in mind, however, that in real nebulae the quantity T0 is finite and the scat- /450-
tering indicatrix is other than spherical. Therefore the results, presented in 
Table 50, a r e  only illustrative in nature insofar as nebulae a re  concerned. 

Equations (32.26) and (32.31) can be solved by an approximation method 
(see [ 6 ] )for any nebular optical radius T0 and for an arbitrary scattering indica

trix x(y). In this case the quantity S(T,8 )  is represented in the form 

(32.38) 

where first  order scattering is taken into account precisely, while the effects of 
higher order scattering a re  only approximated. In this situation the quantity A S  
depends not on the overall scattering indicatrix, but only on the parameter x 1’representing the first coefficient in a Legendre polynomial expansion of x(y) .  

If the function S(T, 9)  is known, then i t  is easy to find the brightness distri
bution over the nebular disk (Fig. 44). Let us denote by I(p) the intensity of the 
radiation coming from the nebula at  a distance p from the center of the disk [in

80)1. As follows from the radiation transferthe previous notations this is I ( T ~ ,  

equation, the quantity I(p) is equal to 

(32.39) 
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where s = m.Changing over to a new
0 0 

integration variable 4 by means of the relations 
~ = a p / s i n 8and s = pctg 8,we obtain 

%-e8 -== $ s(-E& 6ee:irc'- ctg 6)-
ap d6~ ( p )  
sin2 6' (32.40) 

e8 

where 4
0 

= p / r o .  

Figure 44. 
Knowing the quantity I(p) allows one to cal

culate the nebular luminosity, which is obviously equal to 

re 

L , , = 4 3 - 2 n  1I (p )pdp .  (32.41) 
0 

For the ratio of the nebular luminosity Ln to the observed stellar luminosity /451
& we obtain 

(32.42) 

The theoretical values of the quantities I(p) and L /L* can be compared with n 
the results of observations. By means of such a comparison one can attempt to 
determine the optical properties of the nebula, i. e. , the quantities T ~ ,A and x(y). 

Some information about these quantities is especially simple to obtain in 
those cases when the optical radius of the nebula is small ( T ~<< 1). In this case 
the function S ( T ,  9) is defined by the formula 

(32.43) 

and instead of Eq. (32.40) we obtain 

(32.44) 

From this it follows: 

(32.45) 
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We see that it is impossible to find the scattering indicatrix x(9) completely 
from Eq. (32.45), arid only the sum x(9) + x(n - 9) can be obtained. In the case 
of light scattering by dust particles, however, the fraction of the light scattered 
forward is usually much greater than the fraction of the light scattered backward. 
Consequently, a more or less correct representation of the scattering indicatrix 
can be obtained from this sum. 

To determine the quantity Ln/L* for T~ << 1, Eq. (32.44) must be substituted 
into Eq. (32.42). Doing this and performing the integration, we find 

L, -1% (32.46)L. 

This formula is perfectly obvious since for T~ << 1 the amount of energy absorbed 
by the nebula is equal to L(l - e-'O) w L T ~ ,and of this energy the nebula scatters 
the fraction A. 

I. N. Minin [7] made use of Eqs. (32.45) and (32.46) to determine the opti- /452
cal properties of dust nebulae,. Values of the quantity x(y)  + x(n - y ) ,  obtained 
by him for the IC 431 and IC 435 nebulae, a re  listed in Table 51. Here, the us
ual scattering indicatrix normalization was used, i. e. , sx(y)d 447r = 1. The 
numbers in parentheses are found by extrapolation. 

TABLE 51. VALUES OF THE QUANTITY X( y )  + X( T - y )  
FOR TWO NEBULAE 

Commas represent decimal points. 

Values of the quantity AT0 were also obtained for these same nebulae from 
Eq. (32.46). They were equal to 0.063 and 0.16, respectively. Since 70 = ar0' 
and Aa! is the volume scattering coefficient u, then we have A T0 = u r0' With the 

aid of this relation, the quantity u was determined for these nebulae from values 
of the quantity AT0 and the nebular radius ro. 

As observations reveal, nebulae with nearly circular isophots comprise a 
fairly large percentage of the luminous diffuse nebulae. It is, however, difficult 
to infer that each of these is an approximately spherical nebula with a s tar  locat
ed at its center. Most of these nebulae are,  apparently, simply illuminated por
tions of larger nebulae. The illuminated part will obviously be approximately 
spherical even in the case of a formless nebula if its optical thickness exceeds 
unity by an order of magnitude arid the density of matter does not vary greatly 

411 



in it. For determining the function S(T, 9)for these nebulae one can use the ap
proximation T0 = o3 , which leads to considerable simplification of the calculations. 

4. Nature of dust particles. As shown above, a study of the emission of 
dust nebulae allows one to determine certain quantities characterizing their opti
cal properties: the volume absorption coefficient a, the particle albedo A and the 
scattering indicatrix x(y). In turn, knowing these quantities makes it possible to 
attempt to solve questions concerning the shape, size and concentration of dust 
particles, and also concerning the nature of the material of which they are com
posed. 

The results of the theory of light scattering by discrete particles a re  used /453 
to answer these questions. Up to the present time, quite a number of calculations 
have been made of the quantities a,h and x( y )  for particles of various shapes 
(spheres, cylinders, disks) and with different refractive indices. Generally 
speaking, the refractive index is complex in form. For insulating particles the 
imaginary part of the refractive index is equal to zero; for metallic particles it 
is nonzero. In the first case the particles give rise to pure radiation scattering 
( A  = l), in the second case-to scattering as well as pure absorption ( h  < 1). 

Light scattering by spherical particles has been investigated the most com
pletely. The optical properties of these particles depend both on the refractive 
index and on the ratio of the particle radius to the radiation wavelength. The pres
ent status of the theory of light scattering by small particles is discussed in detail 
in Van de Hulst’s book [SI, together with the results of many calculations. 

The application of this theory to the study of dust nebulae does not, however, 
lead to completely definite results since various assumptions have to be made. Us
ually the particle shape and refractive index a re  specified beforehand, and the par
ticle dimensions are determined by comparing the optical properties obtained the
oretically and from observations. 

In his consideration of the IC 431 and IC 435 nebulae cited above, I. N. Minin 
assumed that they were composed of spherical, insulating particles. By compar
ing the values of the quantity x(y )  + x(7r - y )  found from observations (listed in 
Table 51) with the theoretical values of this quantity, he obtained a value of 

a = 6.7.10 -6 cm for the average particle radius in these nebulae. Approximately 
the same values of a were found for dust nebulae by other methods. Therefore it 
is assumed that the average size of interstellar dust particles is of the order 

of cm. 

For a specific particle radius a and refractive index my the theory yields 
a value of the scattering coefficient k, calculated for one particle. Since the vol
ume scattering coefficient cr is known from observations, then the particle con
centration n can be found from the relation cr = nk. Then the dust density in the 
nebula can be found from the formula 

(32 .47)  
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where 6 is the specific gravity of the particle material. By way of an example, 

let us  point out that density values of 2.1.  g/cm 3 and 4.5.10 -24 g/cm 3 were 
obtained from Eq. (32.47) for the IC 431 and IC 435 nebulae, respectively. Here  /454 
it was assumed that 6 = 1 g/cm 3 , and a value of m = 1.33 was assumed for the re
fractive index (i.e., the same as for water droplets o r  ice crystals). 

Some information on the dust particles can also be derived from a study of 
the polarization of the light of nebulae. Observations indicate that the degree of 
light polarization of dust nebulae is quite high-about 10-15%. As should be ex
pected for  light reflection by fine particles, the polarization is radial, i. e. , the 
preferred direction of the electric vector oscillations is perpendicular to the ra
dius vector outward from the illuminating star. The presence of appreciable rad
ial radiation polarization points to the large role of first order scattering in re
gions of the nebula nearest  to the s t a r  (since multiply scattered radiation is weak
ly polarized). 

The theory of light scattering by small particles also provides the possibil
ity of determining the degree of polarization of the reflected radiation. The com
parison of observational and theoretical data on the polarization of nebular radia
tion began to be made only recently and henceforth i t  may lead to significant re
sults (especially when data for different spectral regions are used). 

As we know, numerous dark nebulae exist in the Galaxy in addition to the 
luminous dust nebulae. The nature of interstellar dust particles can also be de
duced from a study of these nebulae in terms of the light absorption caused by 
them. 

The investigation of interstellar light absorption has led to the conclusion 
that in the visible spectrum the absorption coefficient is approximately inversely 
proportional to the wavelength. Moreover, the magnitude of the absorption coef
ficient was also found. In the visible spectrum in the galactic plane the absorp
tion amounts to one stellar magnitude per kiloparsec on the average. This means 
that a path length of 1 kiloparsec corresponds to approximately unit optical dis
tance. Therefore the volume absorption coefficient of interstellar dust for visible 

wavelengths is equal to o! M 3. cm-l. 

On the other hand, according to the theory of light scattering by small par
ticles the wavelength dependence of the absorption coefficient is determined by the 
values assigned to the particle dimensions and the refractive index. If insulating 
particles with a refractive index of m = 1.33 are assumed, then the absorption 
coefficient will be inversely proportional to the wavelength when the particle ra
dius is equal to a - 5.10-5 

cm. 

For such a particle size the absorption coefficient, calculated for one par- /455 
ticle, will be approximately equal to k na2  2 10r8cm2. Using the formula 

CY = nk, we obtain a value of n 2 3 . 1 0-14 cm -3 . In this case Eq. (32.47) (for 
36 FZ 1) yields a value of D = g/cm for the average density of dust matter 

near the galactic plane. 
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As we will see below, this value of the dust density is approximately two 
orders of magnitude less than the gas density near the galactic plane. It should, 
however, be borne in mind that coarse particles, causing no noticeable light ab
sorption but of greater total mass than the particles causing absorption in the 
visible spectrum, can exist in the Galaxy. Therefore the density of dust matter 
in the Galaxy can be somewhat greater than the value given above. 

- ation can be explained by the fact that the inter
t:pin% 1m - d f  L. stellar dust particles are elongated in shape. As 

calculations show, the fraction of the radiation 
0.0-0.4 6.53 @.D'F absorbed by such a particle depends on the angle
1.5-0.9 8.41 0.02 
n.0--1.4 8.56 1.153 between its axis and the direction of the electric /456 
1.5-1.9 9.45 0.29s vector oscillations (the absorption is greatest 

In order for the magnetic field to be able to influence the dust, the presence 
of some quantity of metal in them must be assumed. On the other hand, a study 
of the luminosity of dust nebulae leads to the conclusion that in all probabilitythe
particles in them are nonmetallic. At  the present time, therefore, it is assumed 
that the interstellar dust particles are insulators with a small metallic impurity. 
The presence of graphite particles, which is similar to the metals in some of its 
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properties (especially electrical conductivity), in the Galaxy has also been sug
gested to explain interstellar light absorption and polarization. 

It is interesting to note that the phenomenon of starlight polarization has 
been, for a considerable length of time, one of the main arguments in favor of 
the existence of magnetic fields in the Galaxy. Then other arguments in favor of 
this appeared and the intensity of the galactic magnetic field was measured direct
ly (see Section 34). 

33. Interstellar Gas  

1. Ionization of interstellar hydrogen. The physical processes in gaseous
nebulae ha?exready been considered in detail in Chapter V. There, however, 
we restricted ourselves to only those portions of nebulae which are near hot stars. 
Now let us attempt to formulate an overall concept of interstellar gas, consider
ing regions both near and far from hot stars. 

First, we will discuss the question of the ionization of interstellar hydrogen.
Since hydrogen is the most abundant element in the Galaxy, many processes a re  
inherently dependent on whether the hydrogen is ionized or  neutral in a given re
gion. 

Let us assume that the ionization is produced by a star with a radius r* and 
temperature T,. Then a t  a distance r from the star the fraction of ionized atoms /457
x will be determined by the formula 

(33.1) 


where 

(33.2) 


n is the concentration of hydrogen atoms, W is the dilution factor, T is the optical 
distance from the star to a given point beyond the Lyman series limit. We have 

w=’(’I)”
4 r  (33.3) 

and 

(33.4) 


where k is the average absorption coefficient in the Lyman continuum, calculated 
for one atom. 
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Equation (33.1) was derived in Section 23. There, however, an explicit de
pendence of x on r was found under the assumption that W/n = const. Now we will 
assume that W is given by Eq. (33.3) and n = const. In reality, interstellar gas 
is very inhomogeneous so that the assumption that n is a constant is only a crude 
approximation to reality. 

From the relations that have been presented it is easy to derive the follow
ing equation for  determining the dependence of x on r: 

(33.5) 
r 

Near the surface of the star x = x.+. The quantity x* is close to unity for  stars 
with a fairly high temperature. 

The solution of Eq. (33.5) [just like the solution of Eq. (23.17) in Chapter 
VI shows that the quantity x remains close to unity up to some value r = r0’ and 

then rapidly decreases to zero. Consequently, there exists a region of radius 
r0 about the star within which the hydrogen is almost completely ionized and out

side of which i t  is almost completely un-ionized. 

The transition from one region to the other occurs at the point where the 
optical distance T becomes of the order of unity. On this basis i t  is easy to de
termine the radius ro. From Eq. (33.4) we have /458-

(33.6) 

But for r < ro Eq. (33.1) yields approximately 

(33.7) 

Therefore, substituting (33.7) into (33 .6)  and using Eq. (33.3),  we obtain 

(33.8) 

The region in which the hydrogen is almost completely ionized is called the 
H II zone, and the region in which it is completely un-ionized is the H I zone. The 
radius of the H 11 zone around a given star is defined by Eq. (33.8).  

We can also derive a somewhat different formula for defining the quantity 
r0’ To do this we make use of the fact that all stellar photons beyond the Lyman 

series limit are absorbed in the region of radius r
0’ Ionization of a hydrogen 

atom occurs with the absorption of each Lc photon, and then recombination occurs. 
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Since this is a stationary process, we can equate the number of stellar LC 

photons to the number of recombinations occurring in the region being considered. 
Here, obviously, recombinations at the first level must be disregarded since the 
L quanta arising from these recombinations again produce ionization. 

C 

Let u s  denote by I * the intensity of the stellar radiation. Then for the total
U 

number of L photons emitted by the star we have the expression
C 

where u1is the frequency of the Lyman series limit. On the other hand, the total 

number of recombinations at all levels, starting with the second, occurring in a 
region of radius r0' is equal to 

m t. 

4 x 2  ci 5 n,n+rzdr, 
2 r. 

3
where n+ is the number of protons and ne is the number of free electrons in 1cm . 
Equating the last  two expressions and making use of the fact that ne = n+ e n in /459 
the region being considered, we obtain 

(33 .9)  

It is easily verified that when the stellar radiaton I 
V 
* is given by Planck's formula 

with the temperature T,, Eq. (33 .9)  passes over to Ey. (33 .8) .  

The question of the ionization of interstellar hydrogen was  f i rs t  examined by 
Stromgren [ lo] .  Table 53, taken from this paper, contains values of the quantity 
1-0 calculated from Eq. (33 .8)  for  stars of various spectral classes. The values 

of the stellar temperature used for the calculations and their visual absolute mag
nitude are l i s ted  in the same table. 

From the table i t  is seen that ionization of interstellar hydrogen is produced 
primarily by the hottest stars-spectral classes 0 and B, Class A s ta rs  play only 
a small role in hydrogen ionization. For example, one class 05 star ionizes hy
drogen in the same region of space as 22 million class A 0  stars.  Cold stars ion
ize none of the interstellar hydrogen-the hydrogen is un-ionized, for the most 
part, even in the inner layers  of their own atmospheres. Roughly speaking, the 
boundaries of the ionized hydrogen zones lie within the atmospheres of these s tars .  

Photoionizations of hydrogen atoms and subsequent recombinations occur in  
the H I1 zones surrounding hot stars. Then cascade transition of electrons from 
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level to level occur, so that spectral line photons are produced. Thus, in partic
ular, the emission of the H IT zone appears in the Balmer lines, which can be ob
served. Initially it was precisely this emission that was observed in some /460-
regions of the sky, and then Strijmgren suggested the theory set forth above as an 
explanation of it. 

The radius of the H I1 zone around a given star can be found from observa
tions of the Balmer line emission. By comparing it with the theoretical value of 
the quantity ro, one can estimate the average density of hydrogen atoms in inter
stellar space. Observations show that the radius of the H I1 zone around an 0 
class star is about 100 parsecs. Therefore on the basis of Table 53 we conclude 

3
that the average density of hydrogen atoms is equal to approximately n x 1 cm . 
From this, a value of p M g/cm 3 is obtained for the average density of the 
interstellar gas. 

TABLE 53. RADII OF THE H I1 ZONE AROUND STARS 
OF VARIOUS SPECTRAL CLASSES 

05 79003 -4,2

06 63000 -4.1 

0 7  50000 -4,O B3 18600 

0 8  40000 -3.9 B4 17000 

0 9  32000 -3,6 46 B5 15500 
BO 25000 -3,1 26 A0 10700 

. .  . 

Commas represent decimal points. 

The value of p that has been stated refers to regions near the galactic plane, 
The gas derdity decreases away from this plane. In addition, extremely large 
fluctuations are observed in the interstellar gas density. When the gas density 
in the H I1 zone exceeds the average density by an order of magnitude, we observe 
a luminous difiuse nebula. The density of hydrogen atoms in diffuse nebulae, as 
established in Chapter V, attains values of the order of 103 cm -3 

, 

According to the estimates that have been made, the H I1 zones occupy about 
one-tenth of galactic space. H I zones occupy the remaining space, in which the 
hydrogen is primarily un-ionized. The explanation of the division of the Galaxy 
into H I1 and H I zones is very important for the physics of the interstellar gas, 

2. Ionization of other atoms. After having considered the ionization ofhy
drogen, let us now proceed to a determination of the degree of ionization of other 
atoms in interstellar space. Here we must keep in mind the vast difference in 
ionization conditions in the H II and H I zones, This difference is caused by the 
fact that radiation beyond the Lyman ser ies  limit does not leave the H I1 zone. 
Therefore in the H I zone only those atoms can be ionized whose ionization energy
is less than the hydrogen ionization energy (equal to 13.6 eV). At the same time, 
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in the H II zone atoms with a higher ionization energy can be ionized if the temper
ature of the ionizing star is sufficiently high, 

In the H I1 zone the ionization of all atoms is usually caused by the same 
star as the hydrogen atom ionization. In this case the degree of ionization is de
termined by Eq. (33. l),which is already known to us. In particular, the He and 
He+ atoms can be ionized when the value of T, is sufficiently high. The ioniza
tion of these atoms and their emission, caused by recombinations, occur in cor
responding zones within the H II zone. A l l  these questions have already been dis
cussed in detail in Chapter V. 

The degree of ionization of atoms in the H I zone is determined in a com
pletely different manner. An arbitrary volume element of this zone is usually 
quite fa r  from any hot star and the ionization of atoms in it is usually produced /46 1 
by a large number of different stars. In order to formulate a concept of the av
erage degree of ionization of any atom, we must determine beforehand the aver
age radiation density p, in galactic space. To find the quantity p however, it is 

VY 
necessary to know the distribution of stars of the various spectral classes in the 
Galaxy, as well as the distribution of dust material which causes absorption of 
radiation in the continuous spectrum. 

A determination of the average radiation density in the Galaxy has been made 
in a number of papers. Let us  now find the quantity p 

V’ 
following the work of S. A. 

Kaplan (see [ l l ] ) ;  for simplicity, let us do this for the galactic plane only. 
We will denote by E (z )  the volume emission coefficient at  a height z above 

V 
the galactic plane and by av(z)-the volume absorption coefficient a t  the same 
height. The f i rs t  of these coefficients is caused by stars, the second-by dust. 
We will assume that the decrease of these quantities with an increase in z is rep
resented by the formulas 

2 2 

a,,(z)= av(0 )e  B , eV(z)= e,(O)e h.  (33.10)  

From observations it is known that /3 M 100 parsecs, and the values of /3* are dif
ferent for stars of different spectral classes (about 50-500 parsecs). 

The radiation intensity Iv depends on the galactic latitude b and is defined 
by the formula 

(33.11) 

where T (z) is the optical distance of a point with coordinate z from the galactic
V 

plane. Using Eqs. (33. lo ) ,  we obtain 

(33.12) 
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and 

(33.13) 

The volume emission coefficient is clearly equal to 

Lv 
& ( E )  =-n. ( z ) ,  (33.14)

4n 

where L is the stellar luminosity a t  frequency v and n*(z) is the number of stars 
V 

per unit volume a t  height z. This relation can also be rewritten in the form /462 

G ( Z )  = r.?dv”n. (z), (33.15) 

where I * is the average intensity of the radiation coming from the star. 
1, 

Taking Eq. (33.15) into consideration and making the substitution 1 - e  -z/ P-
= y ,  instead of Eq. (33.13) we obtain 

(33.16) 

In a given case the radiation density is equal to 

(33.17) 

Substituting Eq. (33.16) here, we obtain 

Just  as in the case of the effect of a single s tar ,  to characterize the radia
tion density p 

V 
we can introduce the dilution factor W, defined by the relation 

(33.19) 

Using Eq. (33.18), we obtain 

(33.20) 
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Equations (33.18) and (33.20) determine the desired radiation density and 
its corresponding dilution factor W. This density is produced by stars of a spe
cific spectral class (characterized by the quantities r*, 1; and n*). To find the 

total radiation density, Eq. (33.18) must be summed over all spectral classes. 

Values of the dilution factor W, calculated from Eq. (33.20), as well as val
ues of the quantity wI,* representing the direction-averaged radiation intensity in  
interstellar space, are listed in  Table 54. The values of the quantity WI; are 
given for three wavelengths in the ultraviolet portion of the spectrum. Theoretical 
data on the energy distribution in the stellar spectrum, obtained from stellar pho- /463 
tosphere model calculations, were used in the computations. As already mention
ed (in Section 6 ) ,  these data are quite different from the observational results ob
tained with the aid of rockets. Therefore the values of the quantity WI: that are 
listed require some revision. 

TABLE 54. AVERAGE RADIATION INTENSITY 
IN INTERSTELLAR SPACE 

W 


- .  

The WI * values were  calculated for  radiation in the wavelength interval 
V 

from 912 to 2000 A because it is this radiatiog that produces ionization in the H I 
zone. We recall that radiation with h < 912 A is practically nonexistent in the HI 
zone since i t  is absorbed by the hydrogen in the H I1 zones. 

If the radiation density p at a given point is known, then i t  is easy to deter-
V 

mine the degree of ionization of any atom. To do this we must make use of the 
relation expressing the equality between the number of ionizations and the number 
of recombinations. This relation has the form 

(33.21) 

where v1 is the ionization frequency of the atom being considered and v 1(H) is 
the hydrogen ionization frequency. The quantity p,, entering into Eq. (33.21), 
is given by Eq. (33.19). 
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The radiation density p 
V 

in interstellar space is very small. However, in 

addition to this the free electron density ne is also low. Therefore the degree of 

ionization of many atoms in interstellar space is much greater than unity. For-
5

example, calculations with Eq. (33.21) give about 10 for the value of nc/n 1 for /464-
calcium ( 6 . 1  V ionization potential). Even for ionized calcium (11.9 V ionization 

potential) the degree of ionization, i. e. , the quantity n*/n+, is about 102 . 
It should be noted that the free electron density in the H I zones is much 

less than in the H II zones (by about three orders of magnitude). This is explain
ed by the fact that hydrogen, the most abundant element in the Galaxy, is not ion
ized in the H I zone. The same applies to the next most abundant element-helium. 
F ree  electrons appear in the H I zone only through the ionization of elements whose 
relative abundance is low (carbon, sodium, etc. ). 

3. Interstellar absorption lines. The presence of gas in interstellar space 
is evident not only f romi t s  emission but also from the absorption lines in stellar 
spectra that arise when the stellar radiation passes through the interstellar gas. 
The first interstellar absorption lines (H and K of ionized calcium) were detected 
in the spectrum of the binary star 6 Orion by Hartman in 1904. The position of 
these lines in the spectrum did not change, whereas other lines were periodically 
shifted because of the rotation of one star about the other. Interstellar absorption 
lines were later observed in the spectra of single stars. At first it was  thought 
that the stars are surrounded by clouds of ionized calcium. Then, however, the 
increase in the intensity of interstellar absorption lines with an increase in the 
distance from the star was discovered. This made it possible to arrive at the 
correct point of view that gas fills all of interstellar space. This effect began to 
be used for an approximate determination of the distances to stars. 

Few interstellar absorption lines are observed in the visible spectrum. In 
addition to the H and K lines of ionized calcium already mentioned, the sodium D., 
and D2 lines and a few others a re  observed. Among molecular lines, only the lines 
of neutral and ionized molecules of CH and of cyanogen CN are found. All  these 
lines originate from the ground states of the atoms and molecules. 

This type of interstellar gas absorption spectrum is explained by the fact 
that the degree of atomic and molecular excitation in interstellar space is very 
low. Therefore the lines originating from excited states are extremely weak and 
cannot be observed. The interstellar gas absorption spectrum should comprise 
only lines of the principal series, and we observe those which lie in the visible 
spectrum. The lines of the prinzipal series of many of the abundant elements are 
in the ultraviolet spectrum (912 A < A < 2000 A) and they can be observed with the 
aid of rockets. Lines lying beyond the Lyman series limit ( A  < 912 A) cannot be 
observed because of the absorption of the interstellar hydrogen. 

The big difference in  the degree of ionization and the degree of excitation of /465 
atoms in interstellar space must be emphasized. As we have seen, the degree of 
ionization of the interstellar gas is quite large. It is explained by the fact that the 
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low value of the radiation density is compensated by the low density of free elec
trons. In other words, photoionizations of atoms occur infrequently but the re
verse processes-recombinations-also occur infrequently. It is quite different 
in the case of atomic excitation. Atoms enter excited states (due to stellar radi
ation or collisions) very rarely. However, spontaneous transitions from the ex
cited states occur quickly (independently, as opposed to recombinations, of the 
physical conditions. Therefore the degree of atomic excitation in interstellar 
space is extremely small. 

A study of interstellar absorption makes it possible to determine many char
acteristics of the interstellar gas. This is done by comparing the theoretical and 
observed line profiles and their equivalent widths. 

The determination of the theoretical profiles of the interstellar absorption 
lines does not represent great difficulty since scattered line radiation can be dis
regarded. Let us denote by I

0 
the intensity of the radiation coming from the stel

lar atmosphere, and by \-the intensity of the radiation with wavelength A reach
ing the observer. In a given case these quantities a re  related by the simple ex
pression 

I%=IOe-3, (33.22) 

where T h is the optical distance from the star to the observer. The quantity Io 

can be considered to be independent of h if the interstellar absorption line is not 
superimposed on the absorption line arising in the stellar atmosphere. The 
equivalent width of the interstellar absorption will be defined by the formula 

(33.23) 

The spectral line absorption coefficient must be known to calculate the quan
tities Ih and Wa from Eqs. (33.22) and (33.23). In stellar atmospheres it is de
termined by radiation attenuation and the thermal motion of the atmosphere. In 
the case of the interstellar gas, however, the radiation attenuation can be disre
garded since absorption occurs primarily only in the central portions of the line. 
Therefore for the absorption coefficient, calculated for one atom, we can take 
the expression 

(33.24) 

where k
0 

is the absorption coefficient at the center of the line and Ah 
D 

is the Dop- /466-
pler half-width. On the basis of Eq. (12.6) we have 

(33.25) 
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where f is the oscillator strength, As we will see later, the thermal velocities 
of the atoms are much less than the random motion velocities of the interstellar 
gas. A s  a result, in the expression for the Doppler line half-width 

LI 
Ax0 =?.Q- (33.26)

C 

by v we mean the average random motion velocity. 

If the quantity kh is given, then the optical distance T
h 

cao be found from 
the formula 

(33.27) 

where n is the number of absorbing atoms in 1cm3 and ro is the distance between 

the star and the observer. For the equivalent line width we now obtain 

(33.28) 

where x = h-hO/AAD. 

For small values of the quantity 70= k0N, from Eq. (33.28) we find 

(33.29) 

For large values of the quantity T~ we have the asymptotic expansion 

(33.30) 

If the relationship between W h  and N, given by Eq. (33.28), is plotted on a 

graph, then we obtain the curve of growth for the interstellar absorption line, 
When k0N << 1, the quantity W h  is proportional to N and is independent ofAhD. 

When k
0
N >> 1, the quantity W h  depends very slightly on N,but is approximately 

proportional to AhD. It is obviously impossible to use Eq. (33.28) for very large 
3values of koN (for koN > 10 , approximately) since in this case radiation attenua

tion must be taken into account. 
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Using the values of the equivalent line width and of the curve of growth ob- /467-
tained from observations, one can determine the values of the quantities N and 

AAD. Generally speaking, we have one equation with two unknowns but, for k0N<< 

<< 1, N can be found without knowing AAD. After dividing N by the distance ro to 
the star, we obtain the average concentration of absorbing atoms n. Passing from 
one stage of ionization to another with the aid of the ionization formula, we find 
the average concentration of a given element. The chemical composition of the 
interstallar gas (or, more precisely, the number of atoms of those elements 
which give interstellar absorption lines in the visible spectrum) is determined 
in this manner. 

A determination of the quantity AhD from the observed values of W h  and 

from the curve of growth can be made when the quantity N is estimated beforehand. 
There is also a method for determining the quantities AhD and N simultaneously. 

It is based on the fact that the N a  I and Ca I1 resonance lines are doublets with a 
known ratio of oscillator strengths equal to 2. Therefore if the optical distance 
from the star to the observer is equal to T~ for one component of the doublet, then 

for  the other component i t  is equal to 2 -r0' The quantity -r0 can clearly be found 

from the ratio of the equivalent widths of the doublet components. Further, the 
quantity AhD is determined from Eq. (33 .28)  and the quantity N-from Eq. (33.27). 

Knowing the Doppler half-widthAhD of the line allows one to find the quantity 

v from Eq. (33.26) ,  i. e. , the average random velocity of the interstellar gas. A 
value of v x 10 km/sec is obtained for this quantity. 

A s  already mentioned, in a first approximation the interstellar gas has a 
cloud-like structure. The fact that the interstellar absorption lines sometimes 
consist of several components is evidence of this structure. This is explained by 
the fact that in such cases several clouds with different radial velocities lie along 
the path from the s ta r  to the observer. The relative velocities of the clouds can 
be determined from the displacements of the line components with respect to each 
other. In this manner a value of the order of 10 km/sec is also obtained for  the 
velocity v. 

In determining the equivalent widths of the interstellar absorption lines 
above we have assumed that the random velocities of the interstellar gas have a 
Maxwellian distribution. From a consideration of the absorption line profiles, 
however, other expressions are obtained for the velocity distribution function 
(which falls off more slowly than the Maxwellian function with an increase in ve
locity). These empirical expressions are sometimes also used to construct theo
retical curves of growth. 

It must be reiterated that the interstellar gas takes par t  in the galactic ro- /468
tation. This effect is evident in the profiles of the interstellar absorption lines 
a t  large distances from the s tars ,  with i t  being different for different directions. 
This also must be taken into consideration in plotting the theoretical curves of 
growth. 
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4. Physical state of interstellar gas. A s  we have seen above, the inter
stellar gas is extremely rarefied. From the emission of the gas in the H I1 zones 

3it was  found that on the average there is only 1hydrogen atom in 1cm of inter
stellar space. Approximately the same result is also obtained from the interstel
lar absorption lines. In this case, to be sure ,  the concentrations of other atoms 
are found directly from observations (in particular, sodium and calcium) and in 
the conversion to the density of hydrogen atoms assumptions must be made con
cerning the relative abundance of the elements in interstellar space. Observa
tions of the galactic radio emission at a wavelength of 21 cm, which will be dis
cussed in the following section, give very detailed information on the density of 
interstellar hydrogen and on its distribution in space. 

Let us now briefly consider the question of the temperature of the interstel
lar gas. In the H I1 zones the temperature is determined by the methods discus
sed  in Chapter V and is of the order of 10,000". One of these methods, based on 
a consideration of the energy balance of the gas, can also be used to find the tem
perature in the H I zone. In the H I zone, however, the gas gains and expends en
ergy differently than in the H 11 zone. As we recall, in the H I1 zone heating of the 
gas occurs primarily through the photoionization of hydrogen atoms (and, in part, 
of helium atoms). But in the H I zone only those atoms are ionized whose ioniza
tion potential is less than 13.6 V. Here ,  as simple estimates show, the gas ac
quires most of its energy through the ionization of carbon atoms (whose ionization 
potential is equal to 11.3 V). Since the number of carbon atoms is approximately 
104 times less than the number of hydrogen atoms, then a unit volume of gas in 
the H I zone acquires much less energy than in the H II zone. Because of this, 
those gas cooling mechanisms which are completely nonexistent in the H I1 zone 
play a role in the H I zone. Electron collisions, exciting the fine structure of the 
principal terms of some ions (in particular, C 11and Fe 11), must be considered 
to be the most prominent of these mechanisms. From what has been said it fol
lows that the gas temperature in the H I zone must be very low. 

A detailed examination of the gas energy balance, performed by Spitzer and 
Savedoff [12], led to the conclusion that the temperature in the H I zone is about 
60". It is impossible to attach much faith to this value, however, since different 
gas heating and cooling mechanisms can exist which are difficult to take into ac- /469 
count exactly (for example, heating through the dissipation of magnetic energy, 
cooling through collisions with dust particles, etc. ). As we will see below, a 
temperature value of about 100" is obtained from the 21-cm wavelength radiation 
of the Galaxy. 

Under the conditions existing in the un-ionized hydrogen zones, an appreci
able number of different molecules must be present in them. In the presence of 
thermodynamic equilibrium the molecular concentration is determined by Eq. 
(14.21). Since there is no thermodynamic equilibrium in interstellar space, then 
the condition of equality between the number of molecules being formed and the 
number dissociating must be used to determine the concentration of molecules. 
In this manner i t  is found, in particular, that there should be many hydrogen
molecules H2 in interstellar space. These molecules, however, have not yet 

been detected through observations since all their lines, originating from the 
ground state, are located in the ultraviolet spectrum. A s  already noted, inter
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stellar absorption lines of the CH, CH+ and CN molecules are observed in the vis
ible spectrum of stars. From the equivalent widths of these lines, a density of 

about 10
-8 cm -3 is obtained for these molecules in interstellar space. 

5. Motion of interstellar gas. As observations of the interstellar absorp
tion lines indicate, the gas clouds in interstellar space move with velocities of 
about 10 km/sec. Observations of luminous gas clouds lead to approximately the 
same results. In this case the cloud velocities are determined from the displace
ment of the emission lines in their spectra. In addition, random (turbulent) mo
tions exist within the clouds. This is evident in the fact that the radial velocities 
of different elements of the gas cloud are different. In particular, the internal 
motions have been studied in detail in the case of the Orion nebula. It was found 
that the average velocity of these motions is about 7 km/sec. 

The interstellar gas motions have been studied by the methods of gas dynam
ics (see [13] and [14]). We will mention only some of the results here. 

If the gas cloud is in a vacuum, then it must, of course, expand. As Riemann 
has shown, the expansion velocity is equal to 

(33.31)  

where v is the velocity of sound and y is the adiabatic exponent.
S 

The velocity of sound, as is known, is given by the formula /470 

(33.32) 

where p is the mean molecular weight. The interstellar gas is primarily mona
tomic so that y = 5/3. One can assume that p = 1 and T = 100" in the H I zone 
and p = 1/2 and T = 10,000"in the H I1 aone. Therefore we obtain values of vs = 

= 1.2 km/sec and v = 19 km/sec, respectively, for the velocity of sound in these 
Szones. 

For the cited values of y and vs it follows from Eq. (33.31) that a cloud of 
ionized hydrogen should expand into the void with a velocity of the order of 60 km/ 
/sec. The expansion will occur with approximately the same velocity even when 
the cloud density is much greater than the density of the surrounding medium. Us
ually, however, the density of the H I1 zone does not differ greatly from the density 
of the H I zone adjacent to it. In this case the H 11 zone will expand more slowly;
however, it must expand because of the large difference in the pressures in these 
zones, caused by the temperature difference. The expansion of the hot gas of the 
H JI zone leads to the movement of the cold gases of the H I zone and compresses 
it. Moreover, the density of the hot gas is reduced and it becomes more trans
parent for the stellar radiation in the Lyman continuum. This radiation enters the 
compressed cold gases and causes its ionization. Because of this process the gas 
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in the outer layer of the H I1 zone should be denser and i t  should shine brighter
than the gas in the inner regions. As observations show, the H 11 zones, in real
ity, are often bounded by luminous rims. 

A characteristic feature of the interstellar gas movement is the formation 
of shock waves. This is explained by the fact that the gas velocities in interstellar 
space are often greater than the veolocity of sound (especially in the H I zone). 
Shock waves can ar ise  through different processes: through the expansion of the 
H I1 zone (or, it is sometimes said, through the movement of an ionization front), 
through the collisions of interstellar clouds, through the movement of the enve
lopes ejected during nova and supernova outbursts. 

Let us present some formulas describing the phenomena occurring during 
shock wave propagation. Let a dense cloud (or envelope) move with a velocity v 
in the interstellar un-ionized gas. In front of the cloud there will be compressed 
gas moving with the same velocity v. The boundary between the compressed and 
uncompressed gas, called the shock wave front, moves with a velocity V, greater 
than v. Lf the shock wave propagates in an ideal monatomic gas, then, as calcu- /471
lations show, 

4V=-
3 

(33.33) 

and the density of the compressed gas is four times greater than the density of the 
uncompressed gas. When the gas is compressed, i ts  temperature increases to a 
value determined by the formula 

(33.34) 

It is obvious that the heating of the gas and the motion imparted to it occur be
cause of the kinetic energy of the cloud, which gradually slows down. However, 
in the derivation of the formulas that have been presented the fact that the heated 
compressed gas can be cooled was disregarded. This cooling occurs because of 
the fact that atoms are  excited through collisions with free electrons and then 
emit line quanta that leave the gas. This process is gas luminescence. The 
structure of the shock waves with luminescence was f i rs t  considered by S. B. Pi
kel’ner [15], and then by other authors. The results of this theory differ from 
those cited above. In particular, i t  was found that the density of the compressed 
gas can exceed its initial density tenfold. It is possible that the luminosity of 
some diffuse nebulae is explained by the luminescence of the gas after passage 
of a shock wave through it. 

The turbulent gas motions existing in the Galaxy have been studied by spec
ial statistical methods. A discussion of the theory of interstellar turbulence can 
be found in the already-cited book of S. A. Kaplan [13] in which the original re
sults of the author, taking into consideration the interaction of the gas with a mag
netic field, are also presented, 
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The movement of gas and dust particles in the Galaxy can be caused by a 
number of reasons. One of these is the radiation pressure of the stars, which has 
quite a strong influence on the dust particles. The expansion of nova and super
nova envelopes can be cited as another reason, Apparently, the expansion of the 
ionized hydrogen zones, surrounding class 0 stars ,  plays the greatest role in im
parting movements to the gas and dust in  interstellar space. 

34. Space Radio Emission 

Emission of the H I1 zone. Emission of the interstellar medium is ob1. _______ 
served both in  the optical spectrum and at radio frequencies. Observations in the 
radio frequency band provide valuable information not only about the physical state 
of the interstellar medium but also about its structure and movement. Especially /472
important is the fact that we can observe radio emission from very remote parts 
of the Galaxy which are completely unreachable for optical observations. This is 
explained by the fact that the interstellar dust is practically transparent a t  radio 
frequencies. 

Let us f i r s t  discuss the radio emission coming from the ionized hydrogen 
zones. This emission, observable in the centimeter and decimeter bands, is 
thermal (in the meter band i t  is supplemented with nonthermal emission, which we 
will discuss below). Since the radio emission of the quiet Sun is also thermal in 
nature, we can utilize the formulas presented in Section 18 in the consideration 
of the thermal radio emission of the H I1 zones. 

We will assume that the radio emission comes to us from a cloud of ionized 
hydrogen and that there is no absorption along the path from cloud to observer. We 
will denote the volume emission coefficient by E 

V 
and the volume absorption coef

ficient by a
V 

in the cloud. If the emission is thermal, then we have 

(34.1) 


where T is the electron gas temperature. It was established above that in the e 
H I1 zones the quantity T is nearly constant (and close to 10,000"). Therefore e 
for  the intensity of the emission coming from the cloud we can write 

0where T 
V 

is the optical path length in the cloud. To calculate the quantity Tv' 
Eq. (18.9) should be used, on the basis of which we obtain 

(34.3) 

where s0 is the geometrical llthickness'lof the cloud. 
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As we know, the emission intensity Iv is customarily expressed in terms of 

the brightness temperature Tv by means of Eq. (18.2). Therefore Eq. (34.2) can 
be rewritten in the form 

Ty=T,(I-e-%'). (34.4) 

Let us consider two special cases of Eq. (34.4). For T
V 

>> 1from this for
mula i t  follows that 

Tv Tc, (34.5) 

and for T," << 1: 

Tv Tc~,.Q-v-2 (34.6) 

It is easy to distinguish one case from the other by means of the observed /473 
dependence of the brightness temperature T

V 
on the frequency v. If observations -

show that T
V 

is independent of v, then the optical thickness of the cloud is con

siderable (T
V
0 >> 1). In this case the measured brightness temperature is simply 

equal to the electron temperature of the cloud, which is thereby determined. If, 
however, observations indicate that Tv - v -2 , then the cloud has a small optical 

S O
thickness (7: << 1). In the given case the value of the integral nen+ds (some

0 

times called the "emission standard") can be determined from the measured 
brightness temperature. Knowing the value of this integral and the cloud thick
ness s0 allows one to estimate the average free electron density in the cloud 

(since n+ = ne' approximately). 

A s  seen from Eq. (34.3), the optical thickness of the nebula decreases with 
an increase in frequency. Therefore through observations at radio frequencies i t  
can be shown that the brightness temperature at low frequencies will be a constant, 

and at  high frequencies-proportional to v -2 . In other words, a break is observed 
in the radio spectrum of a nebula at some frequency (which we denote by v1). The 
frequency v1 is obviously determined from the condition 

(34.7) 

4Instead of (34.7) we have, approximately (for Te fi! 10 ), 

*b 


vi2 x 10-7 1n,n+ds. (34.8) 
0 
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Equation (34.8) allows one to find the emission standard from the observed fre
quency v1' 

The formulas that have been presented can be used only for those nebulae 
for which the radio emission intensity Iv is measured. For most nebulae, how
ever, the flux H is measured and not the intensity. In order to derive a theov 
retical expression for H v y  Eq. (34.2) for I v must be integrated over the coordi
nates in the plane of the figure. In this situation it is usually assumed that the 
nebula has a spherical shape. 

Values of the electron temperatures and densities have been determined by 
the methods cited (or different variations of them) for many diffuse nebulae. The 
work of Yu. N. Pariyskiy [16], who investigated the radio emission of the Orion 
nebula in detail, can be cited as an example. In particular, he obtained a value 
of 11,750" for the electron temperature of the nebula. The nebular mass, equal 
to 116 M a ,  was also determined. 

2. Nonthermal emission. From Eq. (34.4) it is seen that in the case of 
thermal emission the brightness temperature T cannot exceed the electron temv 
perature Te. If, however, observations show that Tv  > Te, then one must con
clude that nonthermal emission is present. 

As we know, the electron temperature in the H 11 zones is about 10,000". 
However, the brightness temperature of the Galaxy radio emission in the meter 
band is very high, reaching values of the order of hundreds of thousands of de
grees. Therefore it is necessary to assume that a portion of the continuous 
spectrum radio emission is nonthermal in nature. 

This conclusion is corroborated by the frequency dependence of the radio 
emission intensity found from observations. Usually the radio emission inten
sity and i ts  brightness temperature a re  represented in the form 

I ,  -v-n, Ty-y-n-2 (34.9) 

where n is some constant. For thermal emission n 5 0 (when the emitting layer 
is transparent, Iv decreases with an increase in wavelength, and when it is non
transparent Iv = const). For galactic radio emission in the meter band, however, 
it is found that n M 0 . 5 ,  i. e. , the intensity increases with an increase in wave
length. 

Thus, the galactic radio emission comprises two parts: thermal and non
thermal. In the meter band nonthermal emission predominates over thermal. 
With a decrease in  wavelength, however, the nonthermal emission intensity de
creases and in the decimeter band it is of the same order as the thermal emis
sion intensity. In the centimeter band thermal emission, coming from the ion
ized hydrogen zones as explained above, predominates. 
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It should be noted that ionized hydrogen clouds are sometimes observed in 
the meter band, but by virtue of their absorption, not their emission. This oc
curs when the H 11cloud is projected onto a region of the Galaxy emitting meter 
waves with a very high brightness temperature. 

Detailed maps of the radio emission of the Galaxy have been compiled by 
virtue of numerous observations, The Mills (3.5-m waves) and Westerhout (22
-cm waves) maps can be cited as an example, From the maps that have been 
produced i t  is seen that the centimeter wave emission comes to us from a narrow 
band located along the galactic equator. It originates in H I1 zones in the spiral /475 
arms. Meterwave emission, however, comes both from the narrow galactic band 
and also from a very extended region, the emission intensity of which slowly de
creases with distance away from the galactic plane. This region is approximately 
spherical in shape and is the corona of the Gal.axy. 

At  the present time it is assumed that the nonthermal radio emission of the 
Galaxy is the bremsstrahlung of relativistic electrons in a magnetic field (i.e. ,  
it is caused by the synchrotron mechanism). This concept was first proposed in 
1950 by Alfven and Herlofson [17] and Kippenheuer 1181. These authors based it 
on the fact that an enormous number of high energy particles should exist in gal
actic space which produce the cosmic ray effect observed on Earth. Subsequently, 
the theory of the origin of the nonthermal radio emission of the Galaxy due to the 
synchrotron mechanism was developed in detail by V. L. Ginzburg, I. S. Shklovskiy, 
G. G. Getmantsev and others. 

The basic formulas for determining the intensity of the synchrotron radia
tion were given in Section 3 1  during the discussion of the radio emission of dis
crete sources in the remains of supernovae. These formulas can also be applied 
to the nonthermal radio emission of the Galaxy. Since the observed frequency 
dependence of the radio emission intensity is expressed by Eq. (34.9),  in which 
n x 0 . 5 ,  the enerm. spectrum of the relativistic electrons will be determined by 
Eq. (31.9), in which y M 2. Further, the volume emission coefficient E can be 

V 

found from the radiation intensity I v  and the path length ro in the Galaxy with the 
aid of the relation 

I v  = Evro (34.10) 

A comparison of this value of cV with its theoretical value, given by Eq. (31. l o ) ,  
allows one to estimate either the density of relativistic electrons in the Galaxy, 
o r  the magnetic field intensity (if one of these quantities is given, then the other 
is determined). We assume that the number of relativistic electrons is about 1% 
of the number of high energy particles (estimated from the observed cosmic rays). 

Then values of the order of 10-6-10 5 oersted a re  obtained for the magnetic field 
intensity in the Galaxy. In this situation the magnetic field intensity in the gal
actic corona is 2-3 times lower than in the galactic disk, 

If the nonthermal radio emission of the Galaxy has a synchrotron origin, 
then the manner in which relativistic electrons appear in i t  must be clarified. As 
already stated in Section 31, relativistic electrons can originate during supernova /476 
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outbursts. However, other mechanisms exist for the formation of high energy 
particles in the Galaxy. One of them is the "statistical mechanism" mentioned 
by Fermi. It involves the acceleration of charged particles through collisions 
with a magnetized clmd of interstellar gas. Such a collision can lead to the ac
celeration as well as the deceleration of a particle, with it being more ef�icient, 
the higher the particle energy. It is possible that the high energy particles, 
formed during supernova outbursts, are accelerated still more as the result of 
the action of the Fermi mechanism. 

3. Monochromatic radio emission. At  radio frequencies the interstellar 
medium radiatesenergy not only in a continuous spectrum but also in spectral 
lines. These lines originate through transitions between discrete levels that are 
very close together. The most important of these lines belongs to hydrogen and 
has a wavelength h = 2 1  cm. It originates through transitions between the sub-
levels of the hyperfine structure of the ground state of the atom. Van de Hulst 
first indicated the possibility of observing this line, and then i t  was actually ob
served, Subsequently, many astrophysicists studied the galactic radio emission 
in this line. It should be stressed that these investigations are the major source 
of our information about neutral hydrogen in interstellar space (since it occurs 
preferentially in the H I zones where it gives no emission in the visible spectrum). 

Calculations have shown (see [191) that the Einstein spontaneous transition 
coefficient in the k = 2 1  cm line is equal to 

A = 2.85-10-15sec-1. (34.11) 

As  we see, i t  is very small and therefore the mean lifetime of an atom in an ex
7cited sublevel of the ground state is extremely long-about 10 years. 

Excitation of the upper sublevel occurs through collisions between atoms. 
Under the conditions of the interstellar medium these collisions occur extremely
rarely; however, 1,hey a r e  inore frequent than spontaneous transitions between 
the sublevels, There1or.e one can assume that the distribution of atonis in the 
sublevels is given by Boltzmann's �orinula for the kinetic gas temperalxre Tk' 
In this case the ratio of the emission coefficient to the absorption coefficient at  
the h = 21 cm ljne will  be equal to the value of Planck's function for the same 
temperature, i. e .  the quantity Bu(Tk). 

On the basis of what has been said the emission intensity in the line being /477
considered is represented by the formula 

L'=B,(Th) (1 - e-1"') (34.12) 

where t 0 is the total optical path of a ray a t  frequency u within the line for a giv-
V 

en direction in the Galaxy, and I I' is the intensity of the continuous spectrum
1, 

galactic emission a t  the line frequencies. 
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The quantity I i t  (caused primarily by the nonthermal emission of the Galaxy) 

is determined by the formula 

(34.13) 

where E 
V 

is the volume emission coefficient in the continuous spectrum, and (T
V 

is the volume absorption coefficient in the line. Let I
V 

be the continuous spec
trum emission intensity in the absence of line absorption. The emission coef
ficient E~ is expressed in terms of Iv with the aid of Eq. (34.10). Using also the 
formula t

V 
0 

= CTvr0' instead of (34.13) we obtain 

(34.14) 

Beyond the line limits, i. e., for tb0 - 0, Ivt - I
V 
. The quantity I

V 
can be found 

from observations of a portion of the continuous spectrum adjacent to the line. 

Since the absorption coefficient at the X = 2 1  cm line is very small (it is 
proportional to the small quantity A), then for most directions in the Galaxy the 

0quantity t
V 

is less than unity. Only in certain regions of the sky (in particular, 
in the direction of the galaxtic center) is t

V 
>> 1. In the latter case the gas tem

perature in the H I regions can be determined from the observed line intensity, 
which is now close to the value Bv(Tk). In this way a value of Tk = 125" is ob
tained for this temperature. 

When, however, t
V 

<< 1, instead of (34.12) we have 

lv' - Iv = Bv (Tk)t,'. (34.15) 

Using this formula, one can find the quantity t
V 

from the observed emission in
tensity at the h = 21 cm line. This permits a conclusion to be drawn concerning 
the distribution and movement of interstellar hydrogen. The quantity t

V 
can be 

written in the form 

(34.16) 

where n1(r) is the hydrogen atom density at a distance r in the direction being /478 
considered and k(v - vof)is the absorption coefficient calculated for one atom. 
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Here, vot denotes the center frequency of the line, corresponding to the radial 
velocity v(r)  of the given volume with respect to the observer, i. e. , 

(34.17) 


Let us assume that there is a cloud of interstellar hydrogen, moving at a 
velocity v with respect to the observer, at some distance in the direction being 
considered. Then for frequencies v near the frequency vof defined by Eq. (34.17), 
the value of t 0 will have a maximum and a peak should be observed in the line

V 

profile. The number of hydrogen atoms in the cloud can be found from the inten
sity of this peak, and the cloud velocity can be found from the shift of the peak 
with respect to the center frequency vo. In reality, however, there are a large 
number of clouds, moving with different velocities, along the line of sight. More
over, the interstellar gas takes part in the galactic rotation. Therefore the pro
files of a given line are quite complicated. 

In analyzing the profiles of the h = 21 cm line it must be borne in mind that 
the emission in this line reaches us  from very remote parts of the Galaxy. There
fore, of all the interstellar gas motions, the galactic rotation exerts the biggest 
influence on the line profile. It is easy to derive that in th is  case the radial ve
locity of some volume with respect to the observer is defined by the formula 

u ( r )  = Roto (R)-0 (Ro)]sin ( I  -lo), (34.18) 

where R and R
0 

are the distances of the given volume and the Sun from the gal

actic center, respectively; w(R) is the angular rotational velocity; Z - Z o  is the 

difference in longitudes between the given vol
0 (Po)  	 ume and the center of the Galaxy (Fig. 45). If 

the function w(R)is known, then, using Eq. 
(34.15), the hydrogen distribution in the Gal
axy  can be found from the observed line pro-Qb
files. This work, performed by Oort and his 
colleagues, led to the conclusion concerning
the preferential occurrence of hydrogen in the 

Center of spiral arms. Detailed maps of the hydrogen 
Galaxy distribution in the galactic plane now exist. 

If both sides of Eq. (34.15) a re  integrated -Figure 45. over all frequencies, then we obtain 
/479 

(34.19) 


where A is given by Eq. (34.9). In the derivation of Eq. (34.19), Eq. (8.12) is 
used and negative absorption is taken into consideration. We see that the total 
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2number of hydrogen,atoms in  a column with a 1cm cross  section located along 
the line of sight can be determined from the observed total line intensity with the 
aid of Eq. (34.19). From this, given the dimensions of the Galaxy, the average 
hydrogen atom density can be found. A value of El RI 1cm -3 is obtained for this 
quantity, just as with other methods. 

The galactic rotation velocity as afunction of R can also be determined from 
the profiles of the h = 21  cm line. I t  is obvious that, for a given ray, the volume 
which is nearest  to the center of the Galaxy has the maximum radial velocity, equal 
to Rosin(E - lo).  On the other hand, the velocity of this volume is determined from 

the displacement of the edge of the line with respect to the center frequency v0' A 

comparison of these quantities, obtained by observations in different directions, 
allows one to find the function w(R). 

Thus, very important results are obtained through an analysis of the pro
files of the A = 21  cm line, To a considerable degree this is explained by the 
presence of large velocity gradients in  the interstellar medium, caused by the 
galactic rotation. Because of the Doppler effect, the line emission coming from 
different parts of the Galaxy has different frequencies and is not absorbed along 
the path to the observer. Therefore each element of the line profile characterizes 
the emission coming from a specific portion of the Galaxy. This considerably fa
cilitates the analysis of the line profile. 

Besides the A = 21  em line, the interstellar medium also emits other radio 
frequency lines. In particular, hydrogen gives such lines for the transitions be
tween the fine structure levels. For example, a line with a 3-cm wavelength 
arises from the 22 P3/2-2 '1/2 transition. The intensity of this line, however, is 
low, Hydrogen also emits radio frequency lines for  transitions between high levels 
with principal quantum numbers that are close to each other. It is easily verified 
that lines with a wavelength A > 1cm axe  formed for n - n- 1transitions if n > 
> 60. As  shown by the calculations of N. S. Kardashev [20], the intensities of 
these lines are quite high and they can be observed. 

4. Absorption lines a t  radio frequencies. The interstellar hydrogen gives /480 
both an emission line and an.-absorptionline at  the A = 21 cm wavelength. The 
latter is produced when there is an intense source of continuous spectrum radio 
emission in the pa.th. Generally speaking, the line emission intensity is determined 
by the formula 

I,' =By(T k )(i  -e-f.') +-I," $. I$e-f.@, (34.20) 

where I is the emission intensity of the source, and t 0 is the optical distance
I) V 

from source to observer. If there is no source, then Eq. (34.20) passes over to 
the previous1.y discussed Eq. (34.12). If, however, the source is very intense, 
then instead of (34.20) we obtain 

The absorption line profile is also determined by Eq. (34.21). 
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The h = 2 1  cm absorption line has been observed in the spectra of very 
bright galactic radio emission sources: Cassiopeia A, Taurus A and Sanittarius A. 

The loc&on of these sources a id  the spiral
.- . r 

Qcenter 
. .--

Figure 46. 

small (it is about 30 hertz for H x lo-’ 
is about 104 hertz). Nevertheless one can attempt to measure the magnitude of 

arms,  in which the hydrogen is most abun
dant, is depicted schematically in Fig. 46. 
The hydrogen atom density in the arms,  as 
well as the kinetic temperature of the inter
stellar gas, were determined from the ob
served line profile and intensity with the 
aid of Eq. (3.4.21). 

Especially interesting is the fact that 
the magnetic field intensity in the Galaxy 
can be determined from the h = 21 cm ab
sorption line. This possibility results 
from the fact that the upper sublevel of 
the ground state of the hydrogen atom is a 
triplet and the h = 21 cm line is split into 
three components in a magnetic field (the 
Zeeman effect). Because of the weakness 
of the magnetic field, however, the dis
tance between the outer components is very-

oersted, whereas the Doppler line width 
/481

the splitting, using the polarization of the outer components for this. Such an at
tempt has been made a t  the English radio astronomy observatory of Jodrell Bank. 
A s  a result it was found that in regions of the Galaxy, lying in the directions of 
the three radio emission sources ci ted above, the magnetic field intensity 
amounts to 10-6-10 -5 oersted. 

Besides the h = 21 cm absorption line, interstellar absorption lines of cer
tain molecules can also be observed a t  radio frequencies. The lines of the OH 
molecule were the f i r s t  of these to be detected. A measurement of the profiles 
and intensities of these lines in the direction of the galactic center has made i t  
possible to determine the velocity of the interstellar gas clouds and the density 
of OH molecules in the clouds. 

5. Metagalactic radio emission. Until now we have discussed only the in
terstellar medium in our Galaxy. However, the results of a study of other gal
axies are also of very considerable value in understanding the nature of the inter
stellar medium. These results are based on galactic observations in the optical 
portion of the spectrum as well as a t  radio frequencies. 

The galaxies nearest  to us  are the Magellanic Clouds. Many gaseous nebu
lae, and the radiation of the hot s ta rs  causing them, have been observed in them. 
The S Dorado nebula, whose mass  is apparently about a million solar masses,  is 
especially large. Intense continuous spectrum radio emission, having a thermal 
origin, comes from this nebula. The major portion of the continuous radio emis
sion spectrum of the Magellanic Clouds has a nonthermal (probably synchrotron) 
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nature. Observations of the 21-cm radio emission of the Magellanic Clouds have 
yielded important results. In particular, it has been possible to determine the 
mass of the interstellar hydrogen in them from the intensity of this emission (ap

proximately 6.10 8M a  in the Large Magellanic Cloud and 4-108M a  in the Small). 

The M 3 1  galaxy ("Andromeda nebula") is also very near to us; in many re
spects it is similar to the Milky Way. A study of its emission at h = 21  cm has 
made it possible to determine the rotational velocity at different distances from 
the center and the distribution of interstellar hydrogen. The continuous spec
trum radio emission of the galaxy comes from a more extended region than the 
optical emission. This attests to the presence of a corona, similar to the coro
na of our Galaxy. The frequency dependence of the emission intensity is expres

sed as v -0 .7  , which can be explained by the synchrotron character of the emis
sion. 

The radio emission of many other galaxies has also been measured by var
ious observers. The amount of interstellar hydrogen in the galaxy, determined 
from the A = 21  cm emission, was found to be strongly dependent on its structure. 
This fact is of considerable interest from the viewpoint of the theory of galactic 
evolution. 

The overwhelming majority of the galaxies emit about the same amount of 
energy in the radio band as the Milky Way. Among them, in particular, a re  the 
Magellanic Clouds and the Andromeda nebula. However, the amount of energy 
emitted by some galaxies a t  radio frequencies is some orders of magnitude great
er. Such galaxies are commonly called radio galaxies. The radio source Cygnus 
A, emitting about a million times more energy than our Galaxy at  the radio fre
quencies, is a characteristic example of a radio galaxy. On photographs this 
source is a very unusual galaxy with a binary nucleus. Its emission in the vis
ible spectrum is concentrated in bright forbidden lines (0I, 0 11, 0 111, Ne 11, 
Ne 111, etc. ). The widths of these lines indicates internal motions with veloci
ties of the order of 400 km/sec. 3aade and Minkovskiy, studying the Cygnus A 
source in detail, proposed the hypothesis that in the case given we a re  dealing 
with a collision between two galaxies. Subsequently this hypothesis was applied 
to other radio galaxies; however, V. A. Ambartsumyan [21] advanced persuasive 
objections against it. According to him, galaxies with binary nuclei a r e  in the 
process of splitting and this process, at  a certain stage, is accompanied by in
tense radio emission and by the appearance of emission in the visible spectrum. 

The radio source Virgo A, appearing in visible light as a giant galaxy of 
nearly spherical shape, can serve as another example of a radio galaxy. An in
tense h 3727 A (011) emission line, originating, it must be presumed, in gaseous 
nebulae of low density, is observed in the spectrum of the galactic nucleus. A 
surprising feature of this galaxy is that a bright surge of blue color emanates 
from its nucleus. This emission is polarized (with a 30% degree of polarization), 
and its spectrum is purely continuous. One can assume that the surge emission 
in the visible spectrum is similar to the emission of the Crab nebula, i. e. , it 
has a synchrotron nature. 

-/482 
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A detailed study of the radio galaxies shows the origin of their radio emis
sion is apparently associated with the vigorous activity of their nuclei. This ac
tivity involves the ejection of material from the nucleus, leading to the appear- /483 
ance of relativistic electrons, gas clouds and variable stars in the galaxy. As 
a result, intense radio emission, blue surges and emission lines are observed 
in  the spectra of the galaxies. 

Recently intense radio emission sources, visually identified with star-like 
objects, have also been discovered. The spectra of these quasi-stellar objects 
(sometimes called quasars for short) contain emission lines shifted toward the 
red by an amount of the order of a thousand angstroms. Initially it was assumed 
that the "red shift" in quasar spectra has a gravitational origin. Then, however, 
a view was adopted in which the quasars are extragalactic objects, receding from 
us with velocities of the order of some tens of thousands of kilimeters per sec
ond. By using the Hubble relation between the galactic recession velocity and 
the distance to it, i t  was found that the distances to the quasi-stellar objects 
amount to millions of parsecs, and their brightness is some orders of magnitude 
greater than the galactic brightness. Quasars have stimulated a great deal of 
interest in astrophysics; however, their nature has not yet been explained. 
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CHAPTER VI11 

INTERNAL STRUCTURE OF STARS 

The theory of the internal structure of stars is well removed from other 
portions of theoretical astrophysics. F i r s t  of all, this is explained by the unus
ual nature of the physical conditions within a star, characterized by very high 
temperatures and high densities. The behavior or' matter and energy under such 
conditions is not yet adequately understood. The experimental investigation of 
a high-temperature plasma, of which stellar interiors are composed, has really 
just begun. Therefore the theory of the internal structure of stars can still en
counter many unexpected facts. 

Another feature of stellar interiors is that they cannot be observed with the 
aid of normal astronomical methods. Therefore only indirect considerations, 
and not direct measurements, can be used to check the results of the theory. The
oretically, of course, a possibility does exist for obtaining direct information on 
the processes occurring within a star. This possibility involves the measurement 
of the neutrino flux coming from the star.  Because of the extremely high pene
tration power of these particles, they escape from stellar interiors unhindered. 
However, it is extremely difficult to collect a neutrino, and the development of 
"neutron astronomy'' is a thing of the future. 

The basic problem of the theory of the internal structure of s ta rs  is as fol
lows. Consider a star with radius R, mass  M and luminosity L. The boundary 
conditions of the problem are known, i. e. , the conditions in the surface layers 
of the star. One can assume that the s t a r  is in a steady-state condition (this is 
valid for the overwhelming majority of the stars). It  is required to determine 
the structure of the star, i. e. , to find the density and temperature distribution 
within the star. 

The theory, however, must not only explain the structure of an individual 
star but also explain the various statistical relationships found in  the examina
tion of star clusters. Of these relationships, the following are the principal 
ones: 1)the mass-luminosity relation and 2)  the spectrum-luminosity relation 
(which c a ~also be represented as the luminosity-radius relation). The theory 
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of internal stellar structure should also provide the necessary bases for con
structing a stellar evolution theory. 

Data from theoretical physics must, of course, be used to solve this funda
mental problem. However, the study itself of stellar interiors can lead to the 
expansion of these data. As an example, let us point out that searches for the 
sources of stellar energy contributed to the discovery of nuclear reactions, as
sociated with the evolution of large amounts of energy. Similar discoveries will 
undoubtedly occur in the future. 

The theory of the internal structure of stars has passed through several 
stages in its evolution. Initially only mechanical equilibrium of the star under 
the influence of two forces was considered in the theory: gravity and gas pres
sure. It was assumed that the pressure is proportional to some power of the 
density. This theory found its fruition in Emden's book 111. Subsequently, radi
ation pressure was introduced into the mechanical equilibrium equation and the 
energy equilibrium of the star began to be considered. Eddington's [2] investi
gations had considerable importance a t  this state. However, the fundamental 
problem of the theory-the problem of stellar energy sources-remained unre
solved for a long time. Only in the 1940's was it established that nuclear reac
tions, transforming hydrogen into helium, a re  the prime source of stellar energy. 
This discovery marked the beginning of themodern stage of the theory. The study 
of the structure of white dwarfs, within which the gas is degenerate, occupies a 
special place in the theory of internal stellar structure. 

In this chapter the theory of internal stellar structure is presented in the 
order of its evolution. The initial stages of the theory are considered verybrief
ly since only very few of the results obtained then still retain their value. 

35. Equations of Equilibrium of Stars 

1. Equation of mechanical equilibrium. We will assume that the star pos
sesses  spherical symmetry and is in equilibrium under the influence of gravita
tional and gas pressure forces. Let P be the pressure and p-the density within 
the star. These quantities depend on the distance r from the center of the star. 

The equation of equilibrium under the influence of these forces (i. e. , the /487
7 

equation of hydrostatic equilibrium) has the from 

dP = -gp dr, (35.1) 

where g is the acceleration of gravity at a given point of the star. In the case of 
spherical symmetry the quantity g is defined by the formula 

(35.2) 
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where G is the gravitational constant and Mr is the mass included within a sphere 
of radius r, i. e., 

(35 .3)  

Substituting (35.2)  into (35. l), we obtain 

-=-G$p.dP 
dr (35.4)  

Introducing the expression for M here, we arrive at the equation of mechanical 
equilibrium in the form r 

- - c - - ) = - & ~ G p .i d rZdP 
rZ dr p dr (35 .5)  

Equation (35.5)  is one of the fundamental equations of the theory of the internal 
stellar structure. 

Two unknown quantities enter into Eq. (35 .5) :  the pressure P and the den
sity p. As already mentioned, in the first  stage of the theory development i t  was 
assumed that these quantities a re  interrelated: 

P = Cpk, (35 .6)  

where C and k are  constants. This relationship between P and p is called poly
tropic, Thus, the stars were initially considered as polytropic gaseous spheres. 

With the aid of (35 .6)  we find 

(35 .7)  

Substituting (35.7)  into (35.5)  and using the notation 

(35 .8)  

we obtain 

(35.9)  

where n = l /k- 1). The quantity n is called the polytropic index. 
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Equation (35. 9), in which the one unknown function u(r)  enters,  can be sim- /488
plified somewhat by introducing new dimensionless variables, namely: 

u = uoy, x = hr (35.10) 

and we will assume that u
0 

is the value of u a t  the center of the s t a r  (when r = 0). 

Let us  select the quantity h such that when (35.10) is substituted into (35.9), all 
physical constants vanish. Then we obtain the relation 

(35.11) 

for defining A ,  and Eq. (35.9) assumes the form 

(35.12) 

The function y(x) must clearly satisfy the following two conditions a t  the 
center of the star:  

y = f , y ' = O  for  x = O .  (35.13) 

Equation (35.12),  the so-called Emden equation, played a very important 
role in the f i r s t  stage of studying stellar structure. Many papers have been de
voted to the study of this equation. However, the Emden equation could be solved 
in explicit form for only three values of the polytropic index (n = 0, 1, 5). These 
solutions, for the boundary conditions (35.13), have the form 

29 
&I"I - -

6 
fo r  n =  0, (35.14) 

sin x 
&I=-----

X for n= i, (35.15) 

Y== 
1 for  n = 5 .  (35.16) 

For the boundary conditions (35.13), Eq. (35.12) was solved numerically 
for other values of n. Detailed tables of solutions of the Emden equation are 
given in the astrophysics literature (for example, in [ l ] ) .  

2. Density, pressure and-temperature inside a star. If a star is assumed 
to be a polytropic sphere -with a given polytropic index n, then, using the corre
sponding solution of the Emden equation, one can easily find the distribution of 
density, pressure and temperature inside a star. 
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On the basis of Eqs. (35 ,8)  and (35.10) we have /489 

(35.17)  

Consequently, the constants uo and h must be known to find the function p(r).  We 
use the conditions at the boundary of the s ta r  to determine them. 

Let us  denote the value of x for r = R by x 1’ The quantity x1 is found from 
the condition that the function y(x) becomes zero at the surface of the star, i. e, , 
y(x,) = 0. Applying the second of Eqs. (35 .10)  to the stellar surface, we obtain 

2 1  = XR. (35.18)  

Later we will write the equation of hydrostatic equilibrium for the boundary
of the star. From Eqs. (35.1)  and (35 .2)  i t  follows that 

(35 .19)  

where M is the stellar mass. Using Eqs. (35.7) ,  (35 .8)  and (35. l o ) ,  instead of 
(35 .19)  we find 

(35 .20)  

Substituting into (35.20)  the expression for C from (35.11)  and the expres
sion for A from (35.18) ,  we obtain 

(35.21)  

Thus, the unknown quantities h and uo are given by Eqs. (35 .18)  and (35.21) .  

After their determination, as already mentioned, the density a t  any point of the 
s ta r  can be found from (35.17) .  

The quantity uOnis obviously the density at the center of the s tar ,  i. e. , 
n 

pc = uo . Denoting the mean stellar density by p ,  we have 

- M 

Q=4- (35.22)-x R 3

3 

Therefore Eq. (35.21)  can be rewritten in the form 

(35 .23)  
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Values of the quantities xl, x12y'(xl) and pc/p for different values of the 
polytropic index n are given in Table 55, taken from Chandrasekhar's book [3J. 

TABLE 55. THE DEPENDENCE O F  CERTAIN 
STELLAR PARAMETERS ON THE 

POLYTROPIC INDEX 

Commas represent decimal points. 

By way of an example, let us find the density at the center of the Sun with 
the aid of Table 55, assuming n = 3. Since the mean density of the Sun is equal 
to p = 1.41 g/cm3, then we obtain = 54.2; = 76.5 g/cm 3 for the density at 
the center. C 

The pressure inside the star can be found from Eq, (35.6), for which the 
quantity C, which is assumed to be constant in the star but unknown beforehand, 
must be determined. With the aid of Eqs. (35. 11), (35.18) and (35.21) we have 

/490-

(35.24) 

For the pressure at  the center of the star we find 

(35.25) 

To find the temperature within the star, the equation of state of the stellar 
material, interrelating the temperature, density and pressure, must be specified. 
We assume that the star consists of an ideal gas. In this case we have 

R.P = - p T ,  (35.26)
P 

as the equation of state, where R, is the gas constant and p is the mean molecu
lar weight. 

446 




I 


From Eq. (35.26), with the aid of relations (35.6) and (35.8), for  the tem
perature T we obtain 

T=- CR.
R. (35.27) 

Thus, the temperature is proportional to the quantity u introduced above. 

It is easy to establish that at the center of the star the temperature is equal 
to 

(35.28) 

For the Sun with n = 3, from Eq. (35.27) we find: T
C 

= 2 .10  7 degrees (if it /491 
is assumed that ,u = 1). Of course, this estimate of T

C' 
like the estimate of pc 

made above, is extremely crude. However, as we will see later, more valid 
stellar models, formulated without the assumption of the polytropic relationship 
between pressure and density, lead to results of the same order of magnitude. 

3. Gravitational energy of the star. A very simple formula defining the 
gravitational energy, can be derived for a star in the form of a polytropic sphere. 
Let us  denote the gravitational energy of a star by E. This quantity is negative 
and is numerically equal to the work which must be expended to remove all the 
layers of the star to infinity, i. e., 

lu,E =-G$ -dMr, (35.29) 
T 

where the integration extends over the entire star.  

Equation (35.29) can be rewritten in the form 

(35.30) 

On the basis of Eqs. (35.4) and (35.7),  we obtain 

(35.31) 

Integrating by par ts  and using Eqs. (35.3) and (35.6), we find 

drG iv2-+-=-4n-5Ck p"i' dr =4;r -k 1Pr? dr. (35.32)
k-i k-1 
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Substitution of (35.32) into (35.30) gives 

(35.33) 

On the other hand, Eq. (35.29) can be transformed thus: 

(35.34) 

From (35.33) and (35.34) i t  follows that 

(35.35) 

from which we have 

(35.36) 

The gravitational energy of a star with polytropic index n is defined by this for- /492 
mula. 

As seen from Eq. (35.36), the quantity n cannot be greater than 5. The 
same result is obtained in  the analysis of the Emden equation. 

As already indicated, the energy, equal to -E, must be expended to disperse 
the star into space. Conversely, this energy must be released if a nebula is com
pressed to the stellar condition. 

At  f i r s t  it was assumed that stars originate from nebulae and the radiation 
of a star arises because of the gravitational energy released during the contrac
tion. Then, however, it was ascertained that the gravitational energy is insuf
ficient for this. 

Let us consider the Sun as an example. Assuming n = 3, from Eq. (35.36) 

we find that the gravitational energy of the Sun is equal to E 2 -6- ergs. The 
luminosity of the Sun amounts to 4. ergs/sec. Therefore the gravitational 
energy will allow the Sun to radiate at a constant luminosity for no more 

than 5- 107 years. According to geological data, however, the Earth has existed 

for at least 2- 109 years, with the solar brightness not having changed significant
ly during that time. Consequently, the Sun possesses much more powerful energy 
sources than that represented by its gravitational energy. 
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For some stars, however, the gravitational energy released during con
traction can play a significant role in stellar evolution. White dwarfs are such 
stars. The masses  of white dwarfs are known to be equal, in order of magni
tude, to the mass  of the Sun, and their radii amount to some hundredths of a so
lar radius. Therefore the gravitational energy of a white dwarf will be about 
lo5' ergs. The luminosity of white dwarfs, however, is about a hundred times 
less than the luminosity of the Sun, i. e., it is about ergs/sec. From a 
comparison of these numbers it follows that in the case of the contraction of a 
white dwarf an energy should be released which can assure i ts  radiation over a 
very long period of time. This, of course, does not answer the question of the 
actual energy sources of white dwarfs. 

4. Equation of energy equilibrium. One of the fundamental equations of the 
theory of internal stellar structure-the equation of mechanical equilibrium (35.5)
was derived above. Now we will write down the second fundamental. equation of 
this theory-the equation of energy equilibrium of a star. It  must express the 
condition that the amount of energy produced in any volume element of the s ta r  
is equal to the amount of energy which leaves this volume element. 

Let E be the amount of energy produced by one gram of stellar matter, and 
Lr-the amount of energy produced within a sphere of radius r. We have /493 

(35.37)  

Let us denote by Hr the energy flux In a radial direction at a distance r 
from the center of the star. On the basis of the condition cited, we obtain 

The expression for the quantity Hr is determined by the energy transfer 
mechanism within a star.  Investigations have shown that radiation is the basis 
of these mechanisms (although convection and thermal conductivity must be taken 
into consideration in some cases). 

Lf it is assumed that energy within a s ta r  is transferred only by radiation, 
then from the radiative transfer equation we find 

(35.39)  

where PR is the radiation pressure, x is the absorption coefficient calculated 
for  unit mass,  and c is the velocity of light. 
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From Eq. (35.38) and (35.39) it follows that 

(35.40) 

Substituting (35.37) into (35.40), we have 

(35.41) 

This is the desired energy equilibrium equation of a star. 

In deriving the mechanical equilibrium equation we designated the gas pres
sure  by P. Below, P will denote the sum of the gas and radiation pressures. In 
other words, we will assume 

where 

(35.43) 

and 

i 
P R  =-3 aT‘. (35.44) 

If the expressions that have been presented for  the pressures  are substitut
ed into Eqs. (35.5) and (35.41), then we obtain a system of two equations for de
termining two unknown functions of r: the density p and temperature T. The quan- /494 
tities E ,  uand  p entering into these equations should be considered unknown func
tions of p and T. 

5. Standard stellar model. Before the discovery of nuclear reactions as 
the source of stellar energy, the quantity E was not known. Therefore, in the 
theory of the internal stellar structure, different assumptions had to be made 
with respect to this quantity, so that different stellar models were obtained. The 
model, proposed by Eddington, played an important role in the theory. It is us
ually called the standard stellar model. 

Let us take Eqs. (35.4) and (35.40) as t h s  mechanical and energy equilib
rium equations of a star. Dividing the second of these equations into the first, 
we obtain 

(35.45) 
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Let us introduce the definition 

(35.46) 


Substituting (35.46) into (35.45), we have 

(35.47) 


Eddington made the assumption that within a s ta r  

xq = Const. (35.48) 

Under this assumption the entire right side of Eq. (35.47)will be a constant. 
Therefore, after defining 

(35.49) 


from (35.47) we find 

P R  = (1 -B)p. (35.50) 

and this means 

PG PP. (35.51) 


We see that when the assumption (35.48) is satisfied, the ratio of the gas 
pressure to the radiation pressure does not vary in the star. 

From Eqs. (35.43), (35.44), (35.50)and (35.51) i t  follows that 

1 Re(1-$)P=-aTL, pP =-pT.  (35.56) 
3 P 

Eliminating T from these relations, we obtain 

P =Cp"s, (35.53) 

where 

(35.54) 


If it is assumed that the average molecular weight p is constant in the star, 
then the quantity C will also be a constant. Therefore Eq. (35.53) will represent 

451 




a polytropic relationship between P and p for k = 4/3. In other words, the stand
ard stellar model proves to be a polytropic sphere with n = 3.  Consequently, the 
distribution of density, pressure and temperature in the standard model is given 
by the formulas that have been presented above, based on the solution of the Em-
den equation. In particular, the estimates of the density and temperature at the 
center of the Sun for  n = 3 ,  that were made above, correspond to the standard 
model. 

Earlier,  the constant C was defined for a polytropic sphere by Eq. (35.24)  
as a function of My R and n. NOW, using this formula, we can find the quantity
P within a star. Equating the expressions for C ,  given by Eq. (35 .24)  for n = 3 
and by Eq. (35.54) ,  we find that the quantity p is defined by the equation 

1- fl = C,p4Aq34, (35 .55)  

where 

(35 .56)  

From Eq. (35.55)  i t  is seen that the light pressure fraction (1- p) increases 
along with the mass of the star ( p = 1when M = 0, and p = 0 when M = ..). 

The results of calculations of some characteristics for three stars, derived 
under the assumption that the stellar structure is that of the standard model, are 
listed in  Table 56,  taken from Chandrasekhar [3]. In the calculations it was as
sumed that p = 1. 

TABLE 56. CHARACTERISTICS O F  STA4RS 
ACCORDING TO THE "STANDARD 

MODEL" 
-	 . . . .1 , -.... - -, 

Star 

. Sun 1,OJ 1,oo 

Commas represent decimal points. 

Eddington, based on the stellar model itself, concluded that a relationship 
existed between the masses  and luniinosities of stars. His  reasoning (in a some
what altered form) was as follows. Let us consider Eqs. (35 .49)  and (35.55).  
Eliminating the quantity p from them, we arrive a t  a relationship between the 
quantit.iies, M, L, xq and p. We will assume that the quantities xq and p are 
the same for all stars.  Then the relationship between M and L is obtained. In 
this situation, for small M (i.e. , for values of P close to 1) Eqs. (35.49)  and 
(35.55)  give 

L - M  3 , (35.57)  
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and for large M (i.e. , for small P values) from (35.49) it follows that 

L-N. (35.58) 

Eddington compared his theoretical conclusions with observational data on /496-
stellar masses and luminosities and obtained agreement between them. It is, of 
course, impossible to consider this agreement as confirmation of the theory be
ing considered since a nuniber of unjustified assumptions were made during its 
development (the principal one of which is the assumption that xq is a constant 
inside a star). Of interest, however, is the fact that in these investigations Ed
dington was the first to obtain a relationship between stellar masses and lumin
osities from observational data. This dependence is one of the fundamental re
lationships of stellar astronomy. 

36. Physical Processes Inside Stars 

1. Equation of state of stellar matter. In the previous section the physical 
conditions in stellar-interiors were  explained in their general aspects (i.e. ,  val
ues of density, temperature and pressure were estimated). Now let us return to 
a consideration of the physical processes occurring under these conditions. This 
will allow us, in particular, to derive expressions for these parameters which 
enter into the fundamental equations of the theory of internal stellar structure. 

From the results that have been presented above, i t  follows that a consid
erable temperature increase occurs with depth into the star. The intense ioniza
tion of atoms inside the star is caused by this. As is known (see Section 13), the 
ratio of the number of ionized atoms n+ to the number of neutral atoms n1 is given 
by the following formula: 

(36.1) 

where x1 is the ionization energy from the ground state. The ratio of the number 
of s-times ionized atoms to the number of (s- 1)-times ionized atoms is defined 
by a similar formula. From Eq. (36.1) it is seen that the degree of ionization 
is an intrinsic function of the ratio x1/kT and, roughly speaking, atoms jump in
to the subsequent stage of ionization when this ratio becomes of the order of unity. /497
Therefore light atoms, having low ionization potentials (in particular, hydrogen
and helium), are already completely ionized in the surface layers of the star. 
And, as one goes deeper into the star, more and more electrons a re  removed 
from heavy atoms. 

Thus, the gas within a star (which represents a high-temperature plasma) 
consists of a large mmber of free electrons, "bare1' nuclei of light atoms and 
heavy atoms stripped of an appreciable portion of their electronic shells. Such 
a gas composition inside the star should be taken into consideration in writing
down the equation of state of the gas and, in particular, in determining its mean 
molecular weight. 

453 




In the discussion of stellar atmospheres, we took the equation of state of a 
standard ideal gas as the equation of state of the material, One can assume that 
the state of the gas does not change as one goes deeper into the star (with the ex
ception of special cases which will be discussed below). Therefore we will write 
the equation of state of the gas inside a star in the form 

P = nkT, (36.2) 

where n is the number of particles in 1cm3. Converting, here, from the concen
tration n to the density p with the aid of the relation 

where p is the average molecular weight and mH 
instead of (36.2) we obtain 

(36.3) 

is the mass of a hydrogen atom, 

(36.4) 

i. e. , an equation that is identical to the previously used Eq. (35.26) (since R, = 
= k/mH). 

The quantity p ,  entering into the equation of state (36.4), has an imporb--
significance for the internal stellar structure theory. Let us find this quantity, 
using Eq. (36.3) and bearing in mind that the density p is determined primarily 
by atoms, and the concentration n-both by atoms and by free electrons. As a 
f i rs t  approximation all atoms inside the star will be assumed to be completely 
ionized. 

We will first assume that the star is composed of one element with atomic 
number Z and atomic weight A (as compared to the weight of a hydrogen atom). 
Since for total ionization there must be Z free electrons for each atom, then we 
have 

(36.5) 

Therefore for the quantity p we obtain 

A p=-
1 d - Z  (36.6) 

For hydrogen Eq. (36.6) gives 1.1 = 1/2, for helium 1.1 = 4/3, for other ele
ments p EJ 2. Thus, the average molecular weight inside a star lies within rel
atively narrow limits. However, even small differences in  the quantity p are ex
tremely significant. This is explained by the fact that the temperature is pro
portional to p, and the amount of energy, released during nuclear reactions, de
pends very heavily on the temperature. 
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In reality a star is composed of a mixture of different elements. To de
rive a formula for p in this case, let us denote by xz the weight fraction of an el
ement with atomic number Z (i.e. , we will assume that in a gram of stellar mat
ter, x grams must be atoms of the given element). For the quantity n we now 
find Z 

(36.7) 

where the summation is done over all elements. Substitution of (36.7) into (36.3) 
yields 

i 
U =  (36.8) 

Let X be the weight fraction of hydrogen, Y-the weight fraction of helium 
and (1-X-Y)-the weight fraction of the other elements. Then instead of (36.8) 
we obtain 

1 
P== - - i 

.~- - * 
2x +-3 

4 Y +--(I Y )  
(36.9) 

-x
2 

or  

(36.10) 

As  already indicated, Eq. (36.10) is valid only for complete ionization of 
the atoms at a given point of the star. If the ionization cannot be considered com
plete, then the number of electrons stripped from the atom must be written in 
(36.8) instead of Z .  This number can be determined with the aid of the ionization 
formula (36.1). 

2. Gas degeneracy. As one goes deeper into a star the density also in
creases along with the temperature. The density increase is especially great in 
stars with a high gravitational acceleration force at the surface (in particular, in &
white dwarfs). In these cases, regions in which the gas is degenerate, i. e. ,not 
subject to the laws resulting from classical statistics, can exist inside stars. 
Therefore together with the equation of state (36.4) we must also have the equa
tion of state of a degenerate gas. 

Let us consider a gas comprising free electrons. Such a gas is known to 
be subject to Fermi-Dirac statistics, valid for particles possessing two proper
ties: 1)the particles are indistinguishable, 2) no more than two particles can be 
present in each cell of phase space. According to these statistics the number of 
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free electrons with momentums from p to p + dp is given by the formula 

dnd= 8np2dp i 
h3 -P' 

D @ m k T  - i t  (36.11)  

in which the quantity D is determined from the condition that the total number of 
free electrons in a unit volume is given, i. e. , 

(36.12)  

In order to derive the equation of state of the electron gas, an expression 
for the pressure must be written down. If the particle velocities a re  small com
pared to the velocity of light, then we have 

P -- - - R e ,  (36.13)3 s 2mp2 

or,  on the basis of (36. I I ) ,  

(36.14)  

By elimanating the quantity D, from Eqs. (36.12)  and (36.14)  one can obtain a 
relationship between Pe, n and T, i. e., the desired equation of state of the gas.e 

Let us first assume that D >> 1. Then from Eqs. (36 .12)  and (36.14)  we 
obtain 

(36.15)  

(36.16)  

From this it follows, approximately, that /500 

iP,= zi..l.T( 1$- -+. ..) (36.17)2'/?0 

and 

D =  
2 (2nmI;?') 'A 

(36.18)hsn, 
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We see that the equation of state (36.17) differs little from the equation of 
state of the standard ideal gas. Consequently, in  the case being considered the 
gas is slightly degenerate. If the quantity D is very large, then degeneracy can 
be ignored. This corresponds to neglecting the ones in the denominator of Eq. 
(36.11) and represents a changeover from quantum statistics to classical. 

With the aid of Eq. (36.18) for the quantity D we find that the condition of 
gas degeneracy (or,  more precisely, of weak degeneracy) is the satisfaction of 
the inequality 

(36.19) 

If, however, the reverse inequality is satisfied, then the gas will be highly 
degenerate. The degeneracy will be greater, the lower the temperature and the 
higher the density. 

The equation of state of a highly degenerate electron gas can also be de
rived from Eqs. (36.12) and (36.14). Let us  assume that T = 0. In this case ac
cording to classical statistics all particles are in the phase space element with 
momentum p = 0 and, consequently, the gas pressure is zero. In reality, how
ever, electrons are subject to the Pauli principle, which forbids the presence of 
more than two particles in each element. Therefore when T = 0 the electrons oc
cupy all elements with momentums from p = 0 to some pmS, 
sure  is nonzero. 

In the given case, instead of (36.11) we have 

8np2dp
an,= 

h3 

and from Eqs. (36.12) and (36.14) we find 

Substitution of pmax from (36.21) into (36.22) gives 

and the gas pres

(36.20) 

(36.21) 

(36.22) 

/501 

(36.23) 
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We have derived the equation of state of a completely degenerate electron 
gas. If the temperature is not equal to zero, then a corrective term, depending 
on ne and T, must be added to the right side of this equation; however, it is small 

in the case of high degeneracy. 

In the derivation of Eq. (36.23), Eq. (36.13), which is valid only for parti
cle velocities that are small compared with the velocity of light, was used. This 
means that Eq. (36.23) applies to a nonrelativistic gas. However, the velocities 
of free electrons inside a star can be close to the velocity of light. Therefore 
we must derive an equation of state for the electron gas which would apply for 
this case. 

If the particles can have velocities close to the velocity of light, then in
stead of Eq. (36.13) we must write 

(36.24) 

Substituting Eq. (36.20) here, we obtain 

(36.25) 

or, after integration, 

(36.26) 

where x = p m d m c .  

We can now rewrite Eq. (36.21) in the form 

(36.27) 

Equations (36.26) and (36.27) are the equation of state of a completely de
generate electron gas in parametric form. This equation is valid for an electron 
velocities. 

If x << 1, then the previously derived Eq. (36.23) for a nonrelativistic gas 
results from Eqs. (36.26) and (36.27). If, however, x >> 1, then from these /502 
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relations it follows that 

1 3 ''aPe=-( -) ch n.'l*. (36.28)8 x 

This is the equation of state of a relativistic completely degenerate electron gas. 

3. Energy transfer inside a star. It has already been noted above that ra
diation plays the principal role in  energy transfer inside a star. Therefore it is 
necessary to ascertain through what processes the absorption of radiant energy 
occurs inside a star. Just as in photospheres, the following processes a re  the 
basic ones: 1) the transitions of electrons from bound states to free, i. e., the 
photoionization of atoms; 2)  the transitions of electrons from free states to free; 
3) the scattering of radiation by free electrons. 

Because of the very high temperatures inside a star, light atoms (in partic
ular, hydrogen and helium) are completely ionized. Therefore the absorption of 
the radiation, associated with the photoionization of atoms, can be caused by 
heavy atoms only. Since the heavy atoms are also stripped of an appreciable por
tion of their electrons, they can be considered to be approximately hydrogen-like.
The absorption coefficient, caused by the photoionization of hydrogen atoms, is 
given by Eq. (5.8) of Chapter I. The absorption coefficient, caused by the photo-
ionization of hydrogen-like atoms, is written in a similar fashion: 

where Z1 is the effective charge of the ion. 

Free-free electron transitions occur primarily in the field of the hydrogen
and helium nuclei. The absorption coefficient, caused by these transitions, is 
equal to 

(36.30) 

For Z 1 = 1, i. e. , for hydrogen, Eq. (5.10) of Chapter I is obtained from this 
formula. 

The scattering coefficient by free electrons, as is known, is given by the 
formula 

n e - ( - ) .  e2 285r 
oc=n,ao = 3 mc2 (36.31) 

The mean absorption M, calculated per unit mass, enters into Eq. (35.41), 
expressing the energy equilibrium of a star. Therefore the expressions that have 
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been presented above.for the volume absorption coefficients must be averaged ov- /503-
er the frequency and the relationship a! = x p  must be used. 

The average absorption coefficient for hydrogen atoms has already been de
termined in Chapter I and is given by Eq. (5.34). This formula is also applicable 
to hydrogen-like atoms. Based on it, the following expression can be derived for 
the absorption coefficients caused by photoionizations and free-free transitions, 
respectively : 

(36.32) 

and 


(36.33) 

Here,  the average value of the Gaunt factor is denoted by g. 

The quantities ne and n+, entering into Eqs. (36.32) and (36.33), depend on 

the density and chemical composition. Jus t  as before, let X be the weight frac
tion of hydrogen and Y-the weight fraction of helium. The number of free elec

trons in 1cm 3 , originating through the ionization of hydrogen and helium, is 
equal to Xp/mH and Yp/2mH, respectively, One can assume that the ionization 

of the heavy elements gives 1/2A(1-X-Y)p/AmH free electrons in 1cm 3. There

fore the total density of free electrons will be equal to 

(36.34) 

The quantity n+, entering into Eq. (36.32), is the concentration of atoms 
of a given element in the ionization state beyond that in which the absorbing 
atoms exist. It is clear that a t  each point of the s ta r  absorption is caused pri
marily by atoms in one specific ionization state. A s  already mentioned, for 
this ionization state the quantity Xl/kT must be of the order of unity. The quan
tity n" can be assumed to be approximately equal to the density of all atoms of 
the element being considered, i. e. , equal to the weight fraction of this element, 

multiplied by p/AmH. Summing the quantities n+Z: for all the heavy atoms a,nd 

assuming some average value for Z1 2/A, we obtain the quantity (1-X-Y)pZ 1 
2/ 

/mHA. This analysis, of course, is quite crude. 

The quantity n+, entering into Eq. (36.33), is the density of ionized hydro- /504 
2 gen or  helium atoms. For hydrogen the quantity n+Z1 is equal to Xp/mH, and 

for helium Yp/mH. The sum of these quantities is equal to (X + Y)p/mH. 
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Taking into consideration what has been said, instead of Eqs. (36.32)  and 
(36.33) we obtain 

x' =C'g(i +X) (1 -x- Y)-P 
(36.35)ala 

and 

x" =C"g(1 +.X)(X+Y)-P , (36.36)TI* 

where C' and Ctfare some constants. 

Equations (36.35)  and (36.36)  are obtained by averaging the absorption co
efficients over the frequency with a weighting function representing the Planckian 
intensity. Usually, however, the average absorption coefficient is found from 
Rosseland's formula. In this case, nevertheless, formulas similar to Eqs. (36.35) 
and (36.36)  are obtained. Some difference between them is involved with the nu
merical coefficients only. For example, the following expressions are presented 
in M. Schwarzschild's book [41 for Rosseland's averages: 

Px' =4.3.  1P-g 
t (1+X)(1-x -Y)TT, (36.37)  

."=3.7.1P~(1+x)(x-$Y)---.P 
T ' z  (36.38)  

Here t is the guillotine factor (of the order of unity). 

The scattering coefficient by free electrons, defined by Eq. (a.31),  is in
dependent of the frequency. Assuming cre = xep  and using Eq. (36.34) ,  we obtain 

0 0  
X e  =-(I

2 m ~
+x)=0.2(13.X). (36 .39)  

The average absorption coefficients as a function of chemical composition, 
density and temperature are defined by Eqs. (36.37)-(36.39) .  From these for
mulas one can conclude that photoionization plays the biggest role in the absorp
tion of radiant energy inside stars. Free-free transitions provide an appreciable 
contribution to absorption only when the relative amonnts of hydrogen and helium 
are large. Light scattering by free electrons has significance a t  low densities and 
high temperatures. 

Besides radiation, thermal conductivity plays some role in  the energy trans
fer inside stars.  The amount of thermal energy inside a star even exceeds the 
amount of radiative energy. Radiation, nevertheless, plays a greater role than 
thermal conductivity since the velocity and mean free path length of photons i s  
much greater than �or electrons. Thermal energy is converted into radiant and 
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vice versa at each point of the star (through the absorption and emission of pho
tons) and energy transfer occurs primarily when it is in the form of radiant en
ergy. In some cases, however, the transfer of energy by electronic thermal 
conductivity must be taken into consideration. The relative role of electronic 
thermal conductivity increases with an increase in density. This role is espe
cially large in the case of white dwarfs because of the degeneracy of the electron 
gas in them. This is explained by the fact that in a degenerate gas all the lower 
states are filled and the mean free path of an electron is very long. 

When we studied the solar photosphere, one other energy transfer mecha
ism-convection-was considered (in Section 15). Convective energy transfer can 
play a significant role in the surface layers of stars. The use of the criterion 
(15.10)of Chapter IT1 has shown that in some regions inside a star the radiative 
equilibrium can be unstable and convection should appear. If the power of the 
energy sources increases considerably with approach to the center of the star, 
then a convective nucleus must exist in the star. In this case Eq. (35.41), ex
pressing the energy equilibrium condition of the star, must be altered in an ap
propriate manner. 

4. Nuclear reactions as a sokrce of s te l lar-enera .  In searches for stellar 
energy sources the idea was expressed some time ago that large amounts of ener
gy can be released in the course of nuclear reactions. We will assume that in 
some reaction a nucleus is formed whose mass is AM less than the sum of the 
masses of the nuclei entering into the reaction. Then on the basis of Einstein's 
principle of the equivalence of mass and energy, the energy 

A E  = GAM, (36.40) 

is released during such a reaction, where c is the velocity of light. 

Nuclear reactions, transforming hydrogen into helium, play the major role 
in the release of energy inside stars. As is known, the atomic weight of hydro
gen is 1.008, and the atomic weight of helium is 4.003 (in oxygen units). There- / 5 0 6  
fore an energy corresponding to approximately 0.7% of the mass is released in 
the formation of one helium atom from four hydrogen atoms. Consequently, a 
star, composed initially of hydrogen, must release an energy equal to 

AE" 6.10'8 N, (36.41) 

where M is the stellar mass, when the hydrogen is converted into helium. In 
particular, for the Sun we obtain A E  w 1052 ergs. This energy can provide for 

_I. 

the solar radiation for loL1 years at its present brightness, i. e., for a sufficient 
time from the point of view of current concepts of the lifetimes of stars in the 
Galaxy. 

The conversion of hydrogen into helium inside stars occurs by means of 
two reaction cycles: proton-proton and carbon. 
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The proton-proton cycle consists of three reactions: 

1) H1 + H1-+H2 + e+ + v, 
2) H1 + H2+He3 + y, 
3) He3 + He3+He4 iH' + HI. 

We see that at first a deuteron (the nucleus of heavy hydrogen), a positron 
and a neutrino are formed when two protons meet. The positron, however, im
mdeiately combines with any electron and they disappear, emitting two y rays.
The neutrino escapes from the star unhindered, carrying away some portion of 
the energy being released. Then the deuteron that has been formed combines with 

some proton, forming the He3 nucleus and emitting a y ray. Finally, upon the 
collision of two He3 particles the helium He4 nucleus is formed (an Q! particle) and 
two protons. It should be noted that the last reaction of this cycle can occur by
other means which we are not going to mention here. 

The carbon cycle (also called the "Bethe cycle') is more complex. It con
sists of six reactions: 

1) C12 + HI -+ IV3 + y, 
2) W 3 4  CI3 + e+ + v, 
3) C13 + H1-+N14 + y,
4) w 4 -F H ,015 + y, 
5 )  015- N15 + e+ + v, 
6) N15 + HI -+C12 + He4. 

In this cycle carbon emerges as the catalyst. 

The amount of energy released in the formation of one helium nucleus in the 

first  of these cycles amounts to 4.2-10
-5 erg, and in the second-4.0. erg.

The difference between these numbers is explained by the fact that the energy / 5 q t
carried away by the neutrino is greater in the second cycle than in the first. 

To determine the amount of energy generated by one gram of material in 
one second (this quantity was denoted by E above), it is necessary to know the 
effective cross sections for the reactions being considered. These cross sections 
have been determined theoretically and experimentally (see, for example, [4]and 
[5]). Finally, it was established that for the proton-proton cycle 

(36.42) 


and for the carbon cycle 

(36.43) 
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Here p is the density of the matter, T is the temperature, X is the hydrogen 
weight fraction, XCN is the carbon and nitrogen weight fraction. 

From the formulas that have been presented it is seen that the quantity E 
for the carbon cycle increases more rapidly with temperature than for the pro
ton-proton reaction. At temperatures of about 15-20 million degrees both formu
las for E yield approximately the same results. At lower temperatures the pro
ton-proton reaction plays the major role in the release of energy, at the higher 
temperatures-the carbon cycle. 

Besides the nuclear reactions considered above, whereby hydrogen is con
verted into helium, other reactions can also occur inside stars. At temperatures 
of the order of 108 degrees reactions that convert helium into heavier elements 
are most important. 

Nuclear reactions a re  the obvious and, probably, the chief source of stellar 
energy. This, however, does not exclude the fact that other energy sources can 
exist in stars. 

37. Structure and gvolution of-Stars 

1. Basic equatioz.  The basic equations of the theory of internal stellar 
structure-Eqs. (35 .5)  and (35.41)-were written down in Section 35. The f i rs t  
of these expresses the mechanical equilibrium condition for a star, the second-
the energy equilibrium condition. Further, it was explained how the parameters 
entering into these equations depend on the physical conditions inside the star. 
This makes it possible to obtain solutions to these equations without any of the 
additional assumptions characteristic of the first  stage of the structure theory. 

The basic equations of the internal stellar structure theory can be written 
in the form of the following system of equations: 

(37 .1)  

(37 .2)  

(3  7 . 3 )  

(37 .4)  

The substitution of (37.2)  into (37.1)  obviously gives Eq. (35.5) ,  and the 
substitution of (37 .4)  into (37.3)-Eq. (35.41) .  
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The pressure P entering into Eq. (37 .1)  is the sum of the gas and radiation 
pressures.  The pressure P is expressed in terms of the temperature T, density 
p and average molecular weight p by means of the equation of state of the gas and 
the Stefan-Boltzmann law. In turn, the quantity p is determined by the specifica
tion of the chemical composition. It is expressed in terms of the hydrogen weight 
fraction X and helium weight fraction Y by Eq. (36.10) .  

The average absorption coefficient x and the amount of energy E produced 
are also expressed in  terms of p, T, X and Y. The corresponding formulas were 
given in  the previous section. 

Thus, the system of four equations (37.1)- (37.4) ,  presented above, serve 
to define the four unknown functions: Mr9 Lr, p and T. The quantities X and Y, 

entering into this system, are assumed to be given. 

Boundary conditions must still  be added to this system of equations. At  the 
center of the star we obviously have 

nl r  = 0, L,  = 0 for T = 0, (37"5) 

and at the boundary of the star 

p = O ,  T = O  for r = R .  (37 .6 )  

It must, however, be kept in mind that some formulas, valid for the inner 
layers of the s t a r  (in particular, expressions for 3 . ~and p ) ,  are not applicable 
to the surface layers. This is explained by the fact that in the derivation of these 
formulas intense gas ionization was assumed, whereas the degree of ionization is 
low in the surface Payers. Therefore the use of the equations presented above, 
together with the boundary conditions (37 .6 ) ,  throughout the entire s ta r  can 1ea.d 
to unreliable results. A more correct way to solve the problem consists of de
termining the structure of the surface layers on the basis of photosphere theory 
and of solving the equations presented for the "boundary conditions" resulting 
from data on photosphere structure. 

The system of equations (37.1)-(37.4)  completely defines the stellar struc
ture for these boundary conditions and for specified values of X and Y. Values of 
the quantities M r and Lr for r = R, i. e., the stellar mass  M and luminosity L, 

are also found as a result of the solution of this system. In reality, the values 
of M and E are specified for each star. Therefore the problem of determining 
the stellar structure consists not only of solving this system of equations, but 
also in selecting suitable values of X and Y .  

Large differences in chemical composition and, in turn, in the values of X 
and Y can, however, exist inside a star.  Because of this the problem of deter
mining the stellar structure is not defined. From a physical point of view the 
difference in chemical composition is caused by a change in the rate of the nu
clear reactions from one point of the star to another: this rate is higher, the 
larger  p and T. Therefore, inside stars, regions can exist in which the hydrogen 
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is completely o r  partially %burned out". Such considerations are taken into ac
count in constructing theoretical models of stars. Consequently, the theory of 
internal stellar structure is closely associated with the problem of the evolution 
of stars. 

It should be noted that before the discovery of the nuclear reactions occur
ring in stars the fundamental equations of internal stellar structure theory were 
solved for various assumptions with respect to the quantity E (for a uniform dis
tribution of energy sources, for a point source at the center, etc. ). Certain gen
eral theorems were demonstrated in this work, concerning the equilibrium con
figurations of stars (see [SI). Questions of the stability of stellar configurations 
have also been considered in a number of papers. These questions were studied 
especially thoroughly by A. B. Severnyy [6]. 

2. Structure of main segugncg-stars. The vast complexity of the fundamen
tal equations of internal-stellar structure theory requires that they be solved by 
numerical methods. The equations a re  integrated either from the center of the 
star or  from the surface. Sometimes the integration is done both from the cen
ter and from the surface, and then the solutions obtained are joined together. 
Electronic computers are now widely used for solving these equations. 

We will not describe here the various means that have been selected for 
simplifying the computations. A description of these methods can be found in M. 
Schwarzschild's book [4]. We will only present some of the results taken from 
this book. 

The results of a stellar model calculation of the upper portion of the main 
sequence are given in Table 57. In the calculations it was assumed that the chem
ical composition does not change inside the star. The same relative amounts of 
hydrogen and helium (X = 0.90, Y = 0.09) were also assumed for all stars. Cal
culations were made for stars with masses equal to 10, 5 and 2.5 solar masses. 
The luminosity L, radius R and effective temperature Te were determined for 
each star, as well as the density pc and temperature T at the center. 

C 

TABLE 57. CHARACTERISTICSOF STARS OF 
THE UPPER PORTION O F  THE 

MAIN SEQUENCE 

_- - ~ 
I ._-. I 

Commas represent decimal points. 

For a comparison of the theory with observations, the results of the calcu
lations were plotted on mass-luminosity and spectrum-luminosity diagrams. It 
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was found that the points corresponding to the calculated stellar models lie very 
close to the average curves plotted on the basis of the observational data. This 
can be considered as a confirmation of the correctness of the theory. 

Of the stars on the lower portion of the main sequence, the Sun has been in
vestigated most of all. Solar models have been formulated both with a homogen
eous with an inhomogeneous chemical composition. The results of a calculation 
with one of the models are l is ted in Table 58, which contains values of the funda
mental physical quantities as a function of the distance r from the center of the 
SUn 

TABLE 58. MODEL OF THE SUN IN ITS 
PRESENT STATE 

0 0 0,494 
0,073 0,396 0,611 
0,337 0,909 0.723 
0.626 0.994 0.744 
0;SlS 1;OOO 01744 
0.919 I 1.000 I 0.744 
0;967 1:OOO 0;744 
0,988 i,OOO 0,744 
0,996 1,000 0,744 
0,999 1,000 0,744 
1,000 1,009 0,744 

k p k T le P 

I 


17,351 7.165 42,123 
17,135 7,102 f l . 9 2  : 
16,667 6,971 +1.9,: 
16,072 6,823 +-1,11;3 
15,432 6,676 +0.616 
14,588 6,535 +0.113 
14,144 6,397 -0.393 
13,489 6,256 -0,997
12,592 6,103 - ! , e l 1
i1,89S 5,581 -2.21%- -  -

Commas represent decimal points. 

From the table it is seen that the value of X decreases as one approaches 
the center of the Sun. This corresponds to the assumption made concerning the 
depletion of the hydrogen in the central portions of a s ta r  in the course of evolu
tion. 

The formulation of a given stellar model is associated with an indeterminacy 
caused by a certain arbitrariness in the choice of chemical composition. There
fore in model calculations the probable evolutionary path of the star is taken into 
consideration. In this it is usually assumed that the star, in its initial state, has 
a homogeneous chemical composition with a large hydrogen content, and then the 
amount of hydrogen is reduced through the nuclear reactions. In general form, 
the reduction in the quantity X with time can be expressed thus: /511-

(37.7) 


With a decrease in the quantity X, the quantities 1.1, x and E also change. This 
leads to a change in the structure of the star. After the establishment of a model 
for the initial state of a star with an assumed value of X (for time t = 0), the stel
lar model for time tl can be calculated with the values of X obtained for each 
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point of the star from Eq. (37.7) .  Analogously, the stellar model can be comput
ed for  a subsequent time t2, etc. The evolutionary sequence of stellar models is 
thereby determined. 

In these calculations the stellar mass  is considered to be constant, and the 
luminosity and radius are computed, The data on stars of different spectral 
classes, presented in Table 57, refer  to the initial state of these stars, The 
data for the Sun (Table 58),  however, characterize its present state. For the 
Sun both the past and the future variation of the luminosity and radius were de
termined. It is, of course, impossible to place complete confidence in these 
calculations, but they are of some interest. 

The method discussed for stellar model calculations is based on the as
sumption t t i t  at any instant of time the s t a r  is stationary. In other words, stel
lar evolution is considered to be a succession of equilibrium states. This meth
od, however, must be considered to be only approximate. In reality, the equa
tion of stellar evolution, describing its change with time, should be considered 
instead of equations of equilibrium for the star for  any instant of time. In the 
stellar evolution equations a,ll the unknown quantities are functions of the distance 
r from the center of the star and the time t, and these are partial differential 
equations. 

Calculations show that mechanical equilibrium of the star is established 
much more rapidly than energy equilibrium. Therefore Eqs. (37 .1 )  and (37.2), 
expressing the conditions of mechanical equilibrium, can be left unchanged (af
ter, however, replacing the ordinary differentials by partial). To derive, how
ever, the equations that replace the energy equilibrium equation, the sum 

R. - P a t ,E - - - (  a ,') av 
at 

must be written instead of the quantity E in Eq. (37.4) ,  where V is the specific 
volume. The second term of this sum represents the decrease in the energy, 
evolved by a unit mass,  because of heating, and the third term is the increase 
due to gravitational contraction. Since V = l /p ,  the last term of the sum can be 
written in the form ( P / p )8 p/8t. Therefore instead of Eq. (37 .4 )  we have 

(37 .8)  

Thus, we obtain Eqs. (37.1)-(37.3)  (in which d/dr is replaced by 8/ar) as the 
equations of stellar evolution, as well "7 Eq, (37.8).  

A question arises with respect to when the stellar evolution equations can 
be replaced by the equilibrium equ.ations and when they cannot. It is clear that 
in answering this question it is quite important to determjne the average time 
during which the energy produced within the s ta r  escapes outward. If this time 
is small compared with the time during which the power of the energy sources 
is altered noticeably, then the substitution mentioned above is possible, in the 
opposite case-it is not. 
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To determine the average time required for the energy to escape from the 
star, we must divide the energy, inside the star, by the amount of energy leaving 
the star per  unit time, i. e. , by the stellar luminosity. On the basis of the virial 
theorem, the energy inside the star (thermal and radiant) is equal in order of mag
nitude to the absolute value of the gravitational energy. For crude calculations we 
can assume the star is a polytropic sphere and use Eq. (35.36) for its gravitation- /513 
al energy. In this case a determination of the average time for the energy to es
cape from the star leads to the following results: 

for  the Sun f = 2 . 1 0  7 years,  
- 5

for  a BO star t = 10 years, 
- 6for  a n A 0  star t = 10 years, 

for a KO star t = 5 - 1 07 years,  

for  an MO star t = 2 - 1 08 years. 

A detailed study of the radiation diffusion process inside a s ta r  (see [ 7 ] )  al
so allows one to determine the- average time required for the energy produced a t  
any point of the star, i. e. , t ( r ) ,  to escape. In particular, the average time re
quired for energy produced at  the center of the Sun to escape is equal to t(0) = 

= 6 . 1 07 years. 

We see that very long times are required for the energy to escape from a 
star. But significant changes in the power of the energy sources within a s ta r  
also occur very slowly. Therefore the assumption that stellar evolution can be 
represented as a succession of equilibrium states is valid to some degree. If, 
however, a rapid change from one energy source to another occurs inside a s tar ,  
then the stellar evolution equations must be used. This must be done in studying 
the early stages of stellar evolution. In this case the condition of mechanical 
equilibrium assumed above must also be discarded. 

3. Structure of white dwarfs. White dwarfs, as is known, lie in the lower 
left corner of the spectrum-luminosity diagram, i. e. , they have very low lumin
osities arid high surface temperatures. It follows immediately from this that the 
white dwarfs have very small radii (of the order of hundredth of a solar radius). 
Some white dwarfs are in binary systems, making i t  possible in principle to de
termine their masses. The masses for three white dwarfs have been determined 
and were found to be close to the solar mass. On the basis of thesedataonecan 
conclude that white dwarfs are exceedingly dense: their average density is about 

106 g/cm3 and their average concentration is about lo3' cm-3 

Such high densities for  white dwarfs suggest the possibility that the gas in 
them is degenerate. Let us apply the inequality (36.19) ,  the condition for a non

degenerate gas, to white dwarfs. For electrons (for ne GZ lo3' and T x 10
7

) the 
2left side of this inequality is about loe3, and for protons-about 10 (it is still 

greater for other atomic nuclei). Consequently, the electron gas inside white 
dwarfs is degenerate, and the gas of nuclei is not degenerate. 
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The gas pressure inside a star is a combination of the pressure of free elec- /514-
trons and the pressure of atomic nuclei, i. e., PG = Pe+ Pa' But the pressure of 
the degenerate electron gas is considerably greater than the pressure of the non
degenerate nuclear gas, i. e. , Pe >> Pa (this is one of the intrinsic effects of de

generacy). It is also easy to show that under white dwarf conditions the gas pres
sure  is much greater than the radiation pressure. Therefore the total pressure 
P inside white dwarfs can be assumed to be equal to the pressure of the degenerate 
electron gas. 

We have seen above that only the pressure and density enter into the equation 
of state of a highly degenerate electron gas; the temperature does not enter. This 
means that the pressure and density distributions inside a white dwarf can be found 
on the basis of the equation of state and the equation of mechanical equilibriumonly. 
The equation of energy equilibrium need not be taken into consideration. Conse
quently the structure of a white dwarf is determined much more simply and reli
ably than the structure of other stars. 

Let u s  first take Eq. (36.23) for P, i. e. , we will assume that the degenerate 
electron gas is nonrelativistic. The equation of state (36.23), assuming ne = p/
/pemH, can be rewritten in the form 

P = c p y  (37.9) 

where 

(37.10) 

and the quantity pe, on the basis of (36.34), is equal to 

2 
k = d - ? - x  * (37.11) 

Equation (37.9) is the polytropic relationship between P and p. Therefore 
the white dwarfs being considered are polytropic spheres for which k = 5/3 and, 
in turn, n = 3/2. The distribution of P and p inside the star in this case is found 
on the basis of the Emden theory discussed above. 

An inherent feature of white dwarfs must, however, be noted. In the Emden 
theory the constant C is assumed beforehand to be unknown and only later is i t  ex
pressed in terms of My R and n by Eq. (35.24). In the white dwarf case, however, 
the quantity C is given by Eq. (37.10). Since these expressions for C should be 
equal to each other, we come to the conclusion that the mass and radius of a white 
dwarf a re  interrelated. Namely from (35.24) (for n = 3/2) and (37.10) we find 

MR3 = GOnSt. (37.12) 
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- = 0  

As already mentioned, the equation of state (37.9)  is valid only for  elec- /515 
trons whose velocities are low compared with the velocity of light. This means 
that the results presented apply only to white dwarfs with relatively low densities 
(since on the basis of Eq. (36.27) the density is proportional to the cube of the 
maximum momentum pmax). A more general theory of white dwarfs has been 

given by Chandrasekhar (see [3]), using relations (36.26)  and (36.27)  as the equa
tion of state of the degenerate electron gas. 

We can wr i te  these relations in the form 

P = A f ( s ) ,  p = BZJ, (37.13)  

where 

(37 .14)  

and 

j ( z )  = z(29--3)3/1 + z2+ 3 arc sh z. (37.15,  

Substituting Eqs. (37.13)  into the equation of mechanical equilibrium (35.5), 
we obtain the following equation for  determining the parameter x: 

(37.16) 

It is easy to establish that 

(37 .17)  

Therefore, setting K=y, instead of Eq. (37.16)  we have 

(37.18)  

Obviously, the following boundary conditions must be attached to Eq. (37.18): 

dY for  r= 0, (37.19)
dr 

(37.20)  

471  




Thus, the solution of the second order differential equation under consider
ation must satisfy three boundary conditions. Therefore some relationship must 
exist between the parameters, entering into the equation and the boundary condi
tions. This leads to the relationship between the mass  and radius of a white dwarf. 

Chandrasekhar obtained this relationship in the form of Table 59, containing 
values of the mass,  radius and mean density of the star. The table has been com
piled for  pe = 1. If the quantity 1.1e differs from unity, then the M values must be 

-2 -1multiplied by pe , the R values by pe , and the values by pe. 

TABLE 59. RELATIONSHIP BETWEEN MASS AND 
RADIUS FOR WHITE DWARFS 

__, - __. .... .. . ... . .. - _ -
IM 1 Rincm- l!ing/crn3l e I . 3  

M@ 

R in cni is in g/cm 

_ _ _ _  

5,75 0 Q, 2,95 1.51-109 4,CK-IP
5,51 4,13*108 3,70.10' 2,45 1,72-109 2,29*1P
5,32 5,44-108 1,57.10' 2.02 1,93-109 1.34-105 
4,87 7,69*108 5,08.106 4,62 2,15-9Us 7,70*1Y
4.33 9.92-108 Z,iO*iO" 0,88 2,79-109 1,92*1P
3 , s  I ,29- 109 7,90- I O 5  0 00 0 

I _ _  I~ -

Commas represent decimal points. 

The quantity y and, in turn, the quantities p and P were also obtained, in 
the form of functions of r for different M values, by solving Eq. (37.18). Thus, 
for  each mass  there is a specific radius and a specific stellar structure. 

For  small masses the relationship between M and R, given by Table 59, 
Passes over to Eq. (37.12). A s  M increases, this relationship deviates from 
Ea. (37.12). The stellar mass, consisting of the degenerate gas, cannot, how
ever, be made as large as desired. This important statement is easy to prove. 
When the mean density of the star increases, the equation of state of the gas 
passes over to Eq. (36.28), which can be written in  the form 

P = Cp'lt, (36.21) 

where 

(36.22) 

Consequently, the white dwarf approaches, in its structure, a polytropic sphere 
for  which n = 3. A determination of the quantity C from Eq. (35.24) shows that 
this quantity depends only on M, and is independent of R. After equating the ex

-2pressions for Cy givenby Eqs. (35.24) and (37.22), we obtain a value of 5.751.1, MG 
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for  the mass. This mass  value obviously corresponds to the case when - 03 

and R -0. 

In reality, for very high gas densities, certain effects, ignored above, be
gin to play a role. One of these effects is the deviation of the gravitational field 
from Newtonian gravitational field. The problem of the equilibrium configurations 
of a degenerate gas in  an Einsteinian gravitational field was examined by S. A. Kap
lan [8 ] .  He obtained, as limiting values, a finite configuration radius, a finite den
sity at the center and a mass value somewhat different from the value given above. 

The most important result of the theory of white dwarfs is the relationship 
between masses  and radii derived for them. A comparison of theory with obser
vations is of considerable interest; however, unfortunately, observational data 
are very scarce. At the present time the masses  of only three white dwarfs are /517
known: 0.98 M a  for Sirius By 0.65 Ma for Procyon B and 0.45 M a  for 40 Eridani 
B. All  these s t a r s  are in binary systems, and their masses are determined on 
the basis of Kepler's laws. The radius of a star, as is known, is found from its 
absolute magnitude and surface temperature, determined from the nature of the 
spectrum. Unfortunately, it is difficult to find the radius of the companion of Sir
ius because of the marked effect produced on its spectrum by the emission from 
Sirius itself. The radii of the companions of Procyon and 40 Eridani B were found 
to be equal to 0.010 Ro and 0.016 Re ,  respectively. A comparison of the obser
vational data with the analytical results presented in Table 59 shows that in gen
eral the theory agrees with the observations. It can even be noted that the radii 
of the white dwarfs being considered are greater, the smaller the mass,  just as 
theory predicts. However, detailed comparisons are premature now because of 
the uncertainty of the observational data. Moreover, the quantity pe' which, 

strictly speaking, is unknown (although, as we will see below, the quantity X for  
white dwarfs is probably very small and, consequently, the value of we is very 

close to Z ) ,  still enters into the theoretical relationship between M and R. 

I t  should be mentioned again that the quantity M/R can be determined directly 
from observations of white dwarfs. This determination is based on measuring the 
red shift of the spectral lines when the radiation leaves the gravitational field of 
the star. The magnitude of the "red shift", as is known, is given by the formula 

(37.23) 

and, expressed in velocity, can amount to about 100 km/sec for white dwarfs. It 
is, of course, impossible to distinguish the "red shift" from the Doppler shift, /518 
caused by the movement of the s tar ,  for single s tars ;  but it can be done for binary 
stars. The determinations of the quantity M/R, made for some white dwarfs, pro
vide additional data for  checking the theory. 

In the theory that has been presented for  white dwarfs, it was assumed that 
the electron gas is degenerate throughout the entire star.  In reality, the electron 
gas is certainly not degenerate in the surface layers of the star. However, the 
envelope of nondegenerate gas has a relatively small mass  and it can be neglected 
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in the internal stellar structure theory. This is explained by the fact that the 
gravitational acceleration in the surface layers of a white dwarf is very high, 
so that the temperature and density increase rapidly with depth (on the basis of 
Eqs. (4.48) and (4.49) of Chapter I the temperature gradient is proportional to 

g and p - T3. Therefore the electron gas becomes degenerate even at short 
distances from the surface of the star. Calculations show that degeneracy be
gins in layers with a temperature of the order of a few million degrees. Prac
tically no further temperature rise occurs because of the extremely high thermal 
conductivity of the degenerate electron gas. Thus, a white dwarf can be consid
ered to be composed of an isothermal degenerate core, surrounded by a thin en
velope of nondegenerate gas. 

Knowing the density and temperature distribution inside a white dwarf, we 
can calculate its luminosity. Equation (36.42), defining the amount of energy 
released in the proton-proton reaction (this is the reaction, as we know, that 
plays the primary role in energy production at not very high temperatures), must 
be used for this. The hydrogen weight fraction X must again be specified for cal
culations with this formula. We will proceed differently: we will attempt to esti
mate the value of X from the observed stellar luminosity. Since the quantity E' = 

= L/M is small for white dwarfs (about and the average density is very
6 6high (about 10 ), then at a temperature of about 5-10 degrees Eq. (36.42)  gives 

a very small value for the quantity X: X fil Consequently, the relative abun
dance of hydrogen inside white dwarfs is much lower than in other stars. If we 
were to take a value of the order of unity for X, the calculated luminosity of the 
white dwarf would be about a million times greater than the observed luminosity. 

The very low abundance of hydrogen found for white dwarfs does not, of 
course, refer to their surface layers, in which the temperature is low and prac
tically no nuclear reactions occur. However, with increasing depth into the star 
the intensity of the nuclear reactions increases and the relative hydrogen content 
is reduced. The amount of hydrogen within a white dwarf may be negligibly /519-
small, and the nuclear reactions that provide for the luminosity of the star will 
occur in the deeper layers of the envelope. 

Besides the emission due to the nuclear reactions, white dwarfs can also 
radiate because of the energy released during gravitational contraction (as was 
explained in Section 35). However, contraction is possible only in the case of 
an incompletely degenerate gas since for complete degeneracy a given stellar 
mass corresponds to a specific radius. Because of the very low luminosities of 
white dwarfs, they can emit for a long time (remaining as white dwarfs) simply 
because of the thermal energy they contain, i. e., by slowly cooling. 

A detailed discussion of the theory of white dwarfs can be found in E. Sch
atzman's monograph [9]. 

4. Problem of stellar evolution. Closely related to the internal stellar 
structure theory is one of the most important problems of astronomy-the prob
lem of stellar evolution. At the present time the solution of this problem is 
based on the idea that nuclear reactions play a definite role in stellar evolution. 
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Therefore advances in nuclear physics have been of significant value to the de
velopment of the current opinions on stellar evolution. These opinions are dis
cussed in many books (see, for example, [4] and [5]). We will consider them 
here very briefly. 

Most researchers assume that stars originate from diffuse matter. Ini
tially a contraction of a cloud of diffuse matter occurs, down to the dimensions 
of a star, due to the effect of the inherent gravitational attraction. A star,  or
iginating in this fashion, is heated because of the conversion of gravitational en
ergy into thermal energy. Then, as the temperature rises, nuclear reactions 
begin in the star, converting hydrogen into helium. At this time the star has a 
homogeneous chemical composition and is composed, to an appreciable degree, 
of hydrogen. It is on the main sequence on the spectrum-luminosity diagram. 

The subsequent fate of a star depends primarily on its mass. The greater
the mass, the more rapidly the nuclear reactions occur within the star. As  the 
hydrogen is burned up, the average molecular weight increases so that the tem
perature increases. This leads to an increase in the luminosity of the star, and 
on the spectrum-luminosity diagram it departs from the main sequence to the 
upper right. This, according to calculations, is the course of evolution of a star 
with a large mass. The Sun can remain on the main sequence for about 10 mil
lion years. Stars of the late spectral classes, i. e., with small masses, could 
not leave the main sequence during the life of the Galaxy. 

Thus, an ensemble of stars of the same age should occupy a quite definite 
location on the spectrum-luminosity diagram: stars of the late classes should be 
located on the main sequence, and early class stars should be displaced to the 
upper right. The break in the main sequence should shift toward the late classes 
as the ensemble of stars grows older. This theoretical conclusion can be check
ed against observational data. To do this, star clusters must be used since they, 
apparently, consist of stars of approximately the same age. It was found that 
the spectrum-luminosity diagrams, plotted for clusters from the data of obser
vations, a re  quite similar to the theoretical diagrams. This makes i t  possible 
to distinguish young and old star clusters and to make a general statement about 
the age of the clusters. The excellent agreement between the theoretical and ob
served spectrum-luminosity diagrams for star clusters is considered to be one 
of the strongest arguments in favor of the current theory of stellar evolution. 

The evolutionary paths of stars, after the major mass  of hydrogen in them 
has been burned up, a r e  extremely complicated. When the hydrogen in the ten
ter portion of the star is almost completely burned up, this region, stripped of 
energy sources, starts to contract rapidly. A s  a result of this, dense cores, 
in which the electron gas is degenerate, are formed inside stars. If the mass 
of the star is large, then contraction leads to such high temperatures that in
tense reactions are initiated in the cores, converting helium into heavier ele
ments. This process may be terminated by an explosion of the star, which is 
observed in the form of a supernova outburst. For stars with less mass, after 
the hydrogen in the central portion is burned up, the hydrogen in the outer por
tion is burned up. Because of the rise in  the temperature of the outer layers of 
the star, an unstable extended atmosphere is formed. A star in such a condition 
can evidently lose 8 large amount of matter. These stars are probably observed 
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as the red giants. As observations show, an ejection of material from the red 
giants does actually occur. The gradual dispersion of the atmosphere leads to 
the formation of a hot star in the form of a white dwarf, After the remnants of 
nuclear energy have been expended, the white dwarf still emits through cooling. 
Thus, white dwarfs are the final stage of stellar evolution. 

Many difficult problems are encountered in developing a theory for stellar 
evolution. One of these involves the need to ascertain whether a mixing of the 
material inside a star occurs. The evolutionary path of a star, described above, 
is based on the assumption that mixing does not occur. In the opposite case, i.e., 
when hydrogen is continually entering the center region from the outer layers, 
evolution proceeds more rapidly and the path of a star on the spectrum-lumin
osity diagram looks different. However, the agreement between the theoretical 
and observed spectrum-luminosity diagrams for clusters can be considered to 
be a confirmation of the assumption that stellar evolution occurs without a mix
ing of the material. 

Another important problem concerns the role of the ejection of material 
from a star in the stellar evolution process. As already stated, in the stage 
preceding the formation of a white dwarf the star apparently loses a great deal 
of its mass. Also expressed has been the opinion [ lo ,  113 that stellar evolution 
is accompanied by a significant decrease in mass in the earlier stages also. Ob
servations do in fact show that a very intense ejection of matter occurs from 
certain stars (for example, from Wolf-Rayet and Be type stars). In many re
spects, however, these stars aye exceptional. The masses of normal stars 
(for example, the Sun) change relatively little during the lifetime of the star. 
Moreover, the theory gives no indications whatsoever about the necessity for a 
decrease in the mass of the star. Therefore, in the current theories of stellar 
evolution the masses of the stars are usually assumed to be constant. 

The study of the evolution of stars that enter into close binary systems al
so  represents considerable difficulty for the theory. The effect of the compan
ion certainly facilitates the ejection of matter from a star. Observational data 
indicate this quite definitely. In some cases the presence of the companion may 
cause severe instability and even lead to stellar outbursts. In this regard i t  
should be noted that many of the novae (and maybe even all of them) are members 
of close pairs. 

There is no doubt that the current theory of stellar evolution, which con
siders the evolution of a s tar  to be the result of the nuclear reactions occurring 
in it, has achieved great success. There is, however, another direction in cos
mogony-the striving to obtain information on the origin and evolution of stars 
by an analysis of observational data-that is of great interest. The most prom
inent achievement in this area is the discovery and investigation of stellar as
sociations by V. A. Ambartsumyan and his colleagues [12]. 

As is known, a stellar association is a group of stars which, in terms of 
a number of characteristics, can be considered to have formed relatively re
cently (about a million years ago). The very fact that associations exist leads 
to two important conclusions: 1)stars  a re  created in groups and 2)  the process
of star formation is continuing even up to the present time. V. A. Ambartsumyan 
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predicted the expansion of associations with velocities of about 5 km/sec, which /522

was subsequently observed. He also hypothesized the formation of stars in the 

form of associations from denser prestellar bodies. Associations a re  very un

stable formations (their energy is positive). They quickly disintegrate, and the 

stars composed of them intermingle with other stars formed earlier. One can 

attempt to establish the subsequent evolution of a s tar  by investigating the spa

tial and kinematic characteristics of stars, as well as  other observable features 

of them (see [12] and [131). 


V. A. Ambartsumyan's assumption that stars are formed from denser pre
stellar bodies has not been confirmed by direct observations, i. e. , such bodies 
have not been observed. The possibility of the existence of superdense cosmic 
bodies has, however, been shown theoretically [14]. For this a calculation was 
made of equilibrium configurations consisting of a degenerate baryon gas (i.e. , 
a gas of protons, neutrons and hyperons). As  a result, configurations were 
found with masses of the order of the mass of the Sun and with radii  of the order 
of afewkilometers. As already stated, such bodies have not actually been ob
served; it should be stressed, however, that they cannot be observed. Even if 
the surface temperature of these bodies were about a million degrees, they would 
still emit such a small amount of energy (because of their small size) in the vis
ible spectrum, that i t  would be impossible to detect them from terrestrial obser
vatories . 

The fact that in the portion of the Universe, which we have been able to ob
serve, the evolution of matter goes primarily from denser states to less  dense 
can be advanced a s  an argument in favor of the hypothesis that s tars  originate 
from a dense prestellar material. As we know, observations show that the gal
axies are flying apart with tremendous velocities, stellar clusters and multiple 
stars are  breaking up, material is being ejected from stars. This argument can 
certainly not be considered to be particularly convincing. Only further develop
ment of astrophysics will make i t  possible to ascertain the nature of the material 
from which stars are  formed. 
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TABLES OF FUNDAMENTAL PHYSICAL AND ASTRONOMICAL CONSTANTS 

Physical Constants 

Velocity of light c = 2,99791 l o l o  cm/sec 
2 2Constant of gravitation G = 6,668 dynes-cm /g 

Planck's constant h = 6 ,624  - erg-sec 
Electronic charge e = 4,802 - 1 0 - l o e s ~  

Electron mass m = 9,107 - g 

M a s s  of hydrogen atom mH = 1,673 - g 

Boltzmann's constant k = 1,380 erg/deg 
Stefan's constant a = 7,568 erg/cm 3 -deg 
Gas constant R = 8,314 - 107 erg/deg-g 
Radius of first Bohr orbit a0 = 0,529 * cm 

Ionization frequency of hydrogen v0 = 3,290 - 1015 sec-' 

Electron volt in ergs 1 eV = 1,602 - 10 -1 2 
erg 

Astronomical Constants 

Astronomical unit 1,496 - 1013 cm 
Parsec 3,086 . 10l8  cm 
Light year 9,460 - 1017 cm 
M a s s  of Sun 1 ,991   -

Luminosity of Sun 3,86 - erg/sec 
Radius of Sun 6,960 * l o l o  cm 
Mean density of Sun 1 . 4 1  g/cm3 

Gravitational acceleration at surface 
of sun 2,740 - 104 cm/sec 2 

Number of seconds in a year 3,156 - 107 sec 

Commas represent decimal points. 

More detailed tables are contained in the book: C .W. Allen, Astrophysical 
Quantities, 1955 (Russ. translation: C .W .  Allen, Astrophysical Quantities, 
Izd-vo inostr . lit., 1960). 
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